
Lecture 1

Knots and links, Reidemeister moves

In this lecture, we shall introduce knots and links – the main
protagonists of this course. Intuitively, you can think of a knot as
a string in three-dimensional space whose extremities have been
identified, of a link, as several such strings; these strings can be
deformed, i.e., moved about in space, stretched and compressed,
but they cannot be cut or glued. Two knots (or links) are consi-
dered equivalent if one can be deformed so as to have the same
shape as the other (i.e., be isometric to the other).
There are several ways to define knots, links, and the corres-

ponding equivalence relation. In the first part of this course, we
will use elementary geometric definitions of these notions – they
appear in the next section.
The main goal of the present lecture is to give some examples

of knots and links, introduce the notions of knot diagram, link
diagram, and their Reidemeister moves, and prove the Reide-
meister Theorem, which transforms three-dimensional topological
knot theory into a branch of two-dimensional combinatorial geo-
metry.

1.1. Main definitions

A (nonoriented) knot is defined as a closed broken line without
self-intersections in Euclidean space R3. A (nonoriented) link is
a set of pairwise nonintertsecting closed broken lines without
self-intersections in R3; the set may be empty or consist of one
element, so that a knot is a particular case of a link. An oriented
knot or link is a knot or link supplied with an orientation of its
line(s), i.e., with a chosen direction for going around its line(s).
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Some well known knots and links are shown in the figure below.
(The lines representing the knots and links appear to be smooth
curves rather than broken lines – this is because the edges of the
broken lines and the angle between successive edges are tiny and
not distinguished by the human eye :-).

(d)(c)(b)(a)

(e) (f) (g)

Figure 1.1. Examples of knots and links

The knot (a) is the right trefoil, (b), the left trefoil (it is the
mirror image of (a)), (c) is the eight knot, (d) is the granny knot;
the link (e) is called the Hopf link, (f) is the Whitehead link, and
(g) is known as the Borromeo rings.
Two knots (or links) K, K ′ are called equivalent) if there exists

a finite sequence of ∆-moves taking K to K ′, a ∆-move being
one of the transformations shown in Figure 1.2; note that such a
transformation may be performed only if triangle ABC does not
intersect any other part of the line(s).
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Figure 1.2. ∆-moves
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The next figure shows how a knot’s shape can be transformed
by a successsion of ∆-moves.
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Figure 1.3. Modifying a knot by ∆-moves

As explained above, you can think of a knot as a thin elastic
string in three-dimensional space that can be deformed (i.e.,
stretched, compressed, and moved about), and consider two knots
to be equivalent if one of them can be deformed to exactly the
same shape as the other’s (i.e., made to be isometric to it).
Using the term knot (or link), we often use this term to stand for

the entire equivalence class of knots containing the given concrete
knot. When two knots are in the same equivalence class, we often
say that they have the same knot type. Thus when we say “the
knot shown in Figure 1.3 is the left trefoil”, we mean that it is
equivalent to the trefoil (say the one shown in Figure 1.1.(b)).
One of the basic problems of knot theory, often called the knot

classification problem, is to determine whether any two given
concrete knots are equivalent. An important particular case of
that problem is the unknotting problem: given any concrete knot,
determine if it is the unknot (also called trivial knot), i.e., the
round circle. In this course, we shall be particularly interested in
these two problems.
Remark 1.1. In the examples in Fig. 1.1, there are two trefoil
knots – the “right” and the “left” one – (a) and (b). They are
obviously mirror symmetric, but are not equivalent (the proof,
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which uses a powerful invariant – the Jones polynomial – will be
given later in the course). You will find out, when you do Exercise
1.3, that the “eight knot” (Fig. 1.1 (c)) is, on the contrary, equi-
valent to its mirror image. Later in this lecture, we will discuss
this and similar facts (the “chirality” of knots), as well as the
“invertibilty” of knots (whether their equivalence class changes
or doesn’t change when their oriention is reversed).
Remark 1.2.Most books on knot theory give a definition of knot
equivalence different from ours. Namely, they say that two knots
K and K ′ are ambient isotopic if there exists an orientation-
preserving homeomorphism h : R3 → R3 such that h(K) = K ′.
This definition is equivalent to ours in the sense that the two
definitions yield the same equivalence classes of knots and links.
The proof of this fact is quite difficult, and we omit it. From now
on, we will use the following terminology: instead of saying that
two knots (links) are equivalent, we shall say they are isotopic,
omitting the adjective “ambient” for brevity.
Remark 1.3. This remark is for those readers who are familiar
with the notions of homotopy and of isotopy, and it is purely
terminological – it explains why the adjective “ambient” appears
in the definition mentioned in Remark 1.2 – so that the present
remark can be skipped by the other readers. The point here is
that if we declare two knots K and K ′ to be “equivalent” when
there is an isotopy taking K to K ′, then it is easy to show that
all knots are equivalent to the unknot – see Figure 1.4.

Figure 1.4. All knots are (non-ambient) isotopic to the unknot
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1.2. Reidemeister moves
All the knots and links in Figures 1.1-1.3 are pictured as knot
diagrams or link diagrams, i.e., as projections in general position
of the knot or link on the horizontal plane showing, at each
double point, which of its branches passes above the other one;
“in general position” means that no vertex is projected to another
vertex, there is only a finite number of double points, and they are
all transversal self-intersections. Thus the double points become
crossing points, at which one branch is an overpass, the other, an
underpass. The projection (with double points instead of crossing
points) is called the shadow of the link or knot diagram.
The advantage of picturing knots and links as being (almost!)

planar is that we pass from a three-dimensional problem (which
is not easy to visualize) to a planar one, which is easier to work
with, especially after the so-called Reidemeister moves Ω1,Ω2,Ω3

are introduced: they are defined as shown in Fig.1.5.

↔ ↔

()

↔

()

↔

()

Figure 1.5. Reidemeister moves

These figures should be understood as follows. The pictures show
only the part of the link located inside the disk bounded by a
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hashed line; each move does not modify the part of the link lying
outside of the disk, but changes the part of the link that lies
inside the disk as shown in the picture. Thus Ω1 creates/kills a
little loop, Ω2 creates/kills a double overpass, Ω3 shifts a branch
of the knot over a crossing point.
We shall also need the following definition: two knot diagrams

are called planar isotopic if their shadows can be obtained from
each other by a finite sequence of moves shown in Fig. 1.6.

Figure 1.6. Planar isotopy moves

Reidemeister Theorem 1.1. Two link diagrams, in particular
knot diagrams, L and L′ are isotopic if and only L can be taken to
L′ by a finite sequence of Reidemeister moves and planar isotopy
moves.

Proof. The “if” part of the statement is obvious. The proof of the
“only if” part is basically a general position argument – it suffices
to show that any ∆-move can be replaced by Reidemeister moves.
Suppose we are given a ∆-move [AB] 7→ [AC]∪ [BC] (Fig.1.7).

Without loss of generality, we can assume that the shadows of
the edges [AD] and [BD] of our link issuing from A and B do
not go inside triangle ABC. Indeed, if (say) [AD] goes into the
triangle, we chose a point A′ on AC near A and perform an Ω1

move as shown in Fig.1.7, obtaining the new triangleA′BC such
that the edge issuing from A′ does not go into the new modified
triangle.
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Now let us note that the shadows of the branches of our link
that intersect triangle ABC either lie entirely above it or entirely
below it (otherwise these branches would pierce the triangle,
which is forbidden by the definition of ∆-moves).

Figure 1.7. Modifying triangle ABC

Let us partition triangle ABC into small triangles (whose edges
do not contain vertices of the shadow of L) of the following four
types (Fig.1.8). Triangles of type I contain only one crossing of
L with both edges of L intersecting two sides of such a triangle.
Triangles of type II contain only one vertex of the shadow of L.
Triangles of type III contain only a part of one edge of the shadow
of L. Triangles of type IV contain nothing (the shadow of L does
not intersect them).
Such a partition can be constructed as follows. First, for each

crossing and each vertex of the shadow of L, we construct noninter-
secting little triangles of type I and II, respectively, and then
partition the remaining part of triangle ABC into triangles of
type III and IV.
Now, instead of the given ∆-move, we progressively move from

[AB] to [AC]∪ [CB], performing Reidemeister moves associated
to each of the little triangles. Namely, for each triangle of type
I we do an Ω3 move, for each triangle of type II, an Ω2 move
or a planar isotopy, for each triangle of type III,an Ω2 move or a
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planar isotopy, for each triangle of type IV, a planar isotopy. This
concludes the proof. �

Figure 1.8. Triangles of types I, II, III, and IV

Remark 1.4. The fundamental importance of the theorem is due
to the fact that it reduces a difficult three-dimensional topological
problem to a (simpler) problem in two-dimensional geometric
combinatorics. Actually, some textbooks in knot theory define
links as link diagrams up to Reidemeister moves, thus transforming
3D knot theory into a branch of 2D geometric combinatorics,
thereby hiding its three-dimensional nature. In this course, we
prefer to stay in three dimensions.

1.3. Torus knots

If p, q are coprime positive integers, the torus knot T (p, q) is
defined as the closed curve lying on the standard torus and winding
p times around the meridian of the torus and q times around its
parallel.
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Figure 1.6. The torus knots T (5, 2) and T (4, 3)

Fig. 1.7 shows two torus knots. The trefoil is obviously a torus
knot, namely T (3, 2). The mirror image of a torus knot is also a
torus knot, not isotopic to the given one. Torus knots are classified
(up to mirror symmetry) by pairs of coprime natural numbers.
One can also study torus links – their definition is the object

of Exercise 1.8.

1.4. Invertbility and chirality

For an orientable knotK, let us denote by
←−
K the knot obtained

by reversing the orientation of K and by K∗ the mirror image of
K. A knot K is called invertible if

←−
K = K, plus-amphicheiral if

K∗ = K, and minus-amphicheiral if K∗ =
←−
K .

In what follows, we use Rolfsen’s notation for knots (e.g. 31 for
the left trefoil and 41 for the eight knot). The reader can look at
the other knots indicated below by googling “Rolfsen knot tables”.
The following five logically possible combinations of invertibility

and chirality are actually realized by specific knots:
(1) all four knots K,

←−
K,K∗,

←−
K ∗ are the same – by the eight knot;
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(2) all four knots K,
←−
K,K∗,

←−
K ∗ are different – by the knot 932;

(3) the knot K is invertible and differs from its mirror image –
by the trefoil knot 31;
(4) the knot K is noninvertible and plus-amphicheiral – by the
knot 12427;
(5) the knot K is noninvertible and minus-amphicheiral – by the
knot 817.
We will be able to prove these facts only much later in the

course by using different knot invariants.

1.5. The arithmetic of knots

In this lecture, we introduce a composition operation (called
connected sum) in the set of (isotopy equivalence classes of) knots
and study the algebraic structure thereby obtained. In order to
do that, we shall put knots into boxes. By definition, a boxed
knot is a non-self-intersecting polygonal curve in a cube (or a
in rectangular parallelipipedon) joining the centers of two of its
opposite faces. Boxed knots are oriented (from left to right in
the figures). Two boxed knots are called equivalent (or ambient
isotopic) if there exists a finite sequence of ∆-moves (see Sec. 1.2)
performed inside the cube and taking one curve to the other.
The composition or connected sum of two knots K1 and K2,

denoted by K1#K2, is obtained by joining the boxes containing
them as shown in Fig. 1.6.

Figure 1.6. Connected sum of two knots
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Our immediate aim is to investigate the algebraic structure of
the set K (of equivalence classes of) knots w.r.t. the connected
sum operation #. It turns out that this structure is surprisingly
similar to that of the set of natural numbers w.r.t. multiplication,
with the unknot © playing the role of the unit 1.

The connected sum operation is obviously well defined on equi-
valence classes of boxed knots and possesses the two following
important properties:
I. The connected sum operation is associative and commutative:

K1#K2 = K2#K1,
(
K1#K2

)
#K3 = K1#

(
K2#K3

)
.

II. There are no inverse elements under the connected sum
operation, i.e., K#K ′ =© =⇒ K = K ′ =©.

Associativity is obvious, the proof of commutativity is shown
in Fig.1.7 for a concrete example, but the construction is clearly
general.

Figure 1.7. Commutativity of the connected sum operation

The proof of assertion II is similar to the following “proof” of
the “equality” 1 = 0,

1 = 1 + 0 + 0 + 0 + · · · = 1 + (1− 1) + (1− 1) + (1− 1) + . . .

= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + . . .
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= (1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0,

The proof of assertion II is sketched in Fig. 3.3.
From the intuitive point of view, assertion II means that if

you have a nontrivial knot tied at one end of a rope, then it is
impossible to tie another knot at the other end so that when you
pull the two ends apart, the two knots will cancel each other. In
particular, if you tie a right trefoil at one end of a rope and a left
trefoil at the other end, you get the granny knot, which is not
trivial.

KK =

K K#K̄ K#K̄ . . .=

K K̄#K K̄#K . . .=

K#K̄ K#K̄ K#K̄ . . .=

= = 0

Figure 3.3. Nonexistence of inverse knots

Unlike the above “proof” of one equaling zero, the proof of
assertion II can be made rigorous by using the definition of knot
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equivalence indicated in Remark 1.2 (Lecture 1), but we omit the
details.

Before we continue the study of the algebraic structure of (K,#),
let us compare knots regarded as closed polygonal curves (i.e., as
defined in Sec. 1.1) to the theory of boxed knots. Fortunately, the
two notions turn out to yield the same theory – this follows from
the next statement.

Proposition 1.1 There is a canonical bijection between the
equivalence classes of boxed knots and the isotopy equivalence
classes of oriented knots.

Sketch of the proof. To any concrete boxed map we assign
an oriented knot by joining the endpoints of the boxed knot by
a polygonal non-self-intersecting curve lying outside the box in
the vertical plane containing the endpoints. It is obvious that
this assigment is well defined on equivalence classes, and it is
also obvious that it is surjective. The rigorous proof of injectivity
involves some delicate results on the topology ofR3 and is omitted.
The canonical bijection carries over to ordinary knots all the

structures that we have considered for boxed knots, in particular
the connected sum operation. The latter can be defined directly
for ordinary knots – how this is done is shown in Fig.1.9.

K1 K2, K1#K2⇒

Figure 1.9. Connected sum of ordinary oriented knots
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We have avoided that definition because it is rather difficult to
prove that it does not depend on the choice of representatives in
the equivalence classes of the given knots.

A nontrivial boxed knot is called prime if it cannot be presented
as the sum of two nontrivial knots, i.e.,

K = K1#K2 =⇒ K1 =© or K2 =©.

If a knot is not prime, we say that it is composite. An example
of a composite knot is shown in Fig. 1.10. The reader is invited
to decompose this knot into (three) prime knots (Exercise 1.9)

Figure 1.10. A composite knot

The main result of this section is the following

Theorem 1.2. The set of equivalence classes of knots w.r.t. the
connected sum operation is a commutative semigroup

(
K,#

)
with unique (up to order) decomposition into prime knots, i.e.,

K ∈ K, K 6=© =⇒ ∃!{P1, . . . , Pn} : K = P1# . . .#Pn,

where the Pi are prime knots.

The proof of the existence and uniqueness involves some delicate
3D topology and the fundamental group, and so is omitted.
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1.5. Exercises

1.1 Using Reidemeister moves, show that the two diagrams of
the unknot with opposite orientations are equivalent.

?

K K ′

1.2.Using Reidemeister moves, show that the two knot diagrams
K1 and K2 represent the same knot.

?

K1 K2

1.3.Using Reidemeister moves, show that reversing the orientation
transforms the knot diagram of the right trefoil into an ambient
isotopic knot.
1.4. Which of these knots represent the right trefoil? the figure

eight knot? the unknot?

() () () ()

() () () ()
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1.5. Using Reidemeister moves, show that reversing the orien-
tation transforms the knot diagram of the eight knot into a
diagram of the same eight knot.
1.6. Find a knot diagram with five crossings which is a torus

knot. What are the values of p and q for that knot?
1.7. Find a knot diagram with 17 crossings which is a torus

knot. What are the values of p and q for that knot?
1.8. For any pair of integers (k, l) give a reasonable definition

of torus link of type (k, l) (similar to the definition of a torus
knot of type (p, q)) and find the number of its components.
1.9. Represent the knot in Fig. 1.10 as the connected sum of

three prime knots.


