
Lecture 2

The Conway polynomial

In this lecture, we define the Alexander–Conway polynomial,
which is an isotopy invariant of knots and links, by means of three
simple axioms due to John Conway. These axioms include the so-
called Conway skein relation, an unusual geometric-combinatorics
relation, which opened the way to the modern theory of knot
invariants.

We then learn to calculate the values of the Alexander–Conway
polynomial for concrete knots and links and see how well that
polynomial distinguishes nonisotopic knots and nonisotopic links.
It turns out that the Alexander–Conway polynomial is a strong,
but not a complete invariant.

We conclude the lecture by sketching a proof of the fact that the
Alexander–Conway polynomial actually exists, i.e., that there is
a unique map ∇ of the set of (isotopy classes of) links to the ring
Z[x] of one-variable polynomials with integer coefficients such
that ∇ satisfies the three axioms.

Conway proved that such a polynomial ∇L(x) exists and is
unique by showing that the three axioms are satisfied by the
polynomialAL(t) ∈ Z[t, t−1] originally defined by J.W. Alexander
if one changes the variable according to the rule x↔

√
t−1/

√
t.

Alexander defined his polynomial AL(t) as an element of Z[t, t−1]
by a concrete rather sophisticated topological construction invol-
ving 1-homology groups and cyclic coverings. In this lecture, and
in this course, we do not explain Conway’s proof nor Alexander’s
definition – they are not elementary.
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2.1. Axiomatic definition

If we want to prove that two knot (link) diagrams represent
the same knot (link), it suffices to find a series of ∆-moves (or
Reidemeister moves) taking one to the other. But what must
we do to prove that two knot (link) diagrams represent different
knots (links)? We must use an invariant. Here we shall use the
Conway polynomial (Conway’s version of the Alexander poly-
nomial), defined as follows.

To each oriented link (in particular knot) diagram L, a poly-
nomial with integer coefficients in the variable x, called the Con-
way polynomial of the link L and denoted by ∇(L) or ∇L(x)
is assigned; this assignment must satisfy to the three following
conditions (Conway axioms):

(I) Invariance: If L is equivalent to L′, then ∇(L) = ∇(L′).

(II) Normalization: ∇(©) = 1 for the unknot ©.

(III) Skein relation:

∇(L+)−∇(L−) = x · ∇(L◦)

∇
( )

−∇
( )

= x∇
( )

The above relation should be understood as follows: we are
given three links L+, L−, L◦ that are identical outside the small
disks bounded by the three dashed circles, inside which they are
as shown in the picture, and their Conway polynomials satisfy
the displayed relation.
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It turns out that these three axioms are quite sufficient for
calculating the values of the Conway polynomial of concrete knots
and links.

2.2. Calculations

Let us calculate the Conway polynomial of the two-component
trivial link ©©. Using (III), and then (I) and (II) twice, we
obtain

x∇
( )

= ∇
( )

−∇
( )

x · (?) = 1 − 1

Thus ∇(©©) = 0.
Now let us calculate the Conway polynomial of the right Hopf

link, i.e., the Hopf link with oppositely oriented circles. We have

∇
( )

−∇
( )

= x∇
( )

? − 0 = x · 1
Thus ∇(right Hopf link) = x.
Finally, let us calculate the Conway polynomial of the right

trefoil. We have

∇
( )

−∇
( )

= x∇
( )

? − 1 = x · x
Thus ∇(right trefoil) = 1 + x2.
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What do those calculations show? They show that the Hopf
link cannot be unlinked (i.e., is not isotopic to the trivial two-
component link) and that the right trefoil cannot be unknotted
(i.e., is not isotopic to the unknot) provided that we know that
an assignment L 7→ ∇(L) satisfying axioms (I). (II), (III) exists
and is unique. This will be proved in Sec. 2.3, and now we shall
continue similar calculations assuming that this is the case.
The next link whose Conway polynomial we will find is the left

Hopf link (Exercise 2.1), then we calculate that of the left trefoil
(Exercise 2.2), obtaining ∇(left trefoil) = 1 + x2 and then of the
eight knot (Exercise 2.3), ∇(eight knot) = 1− x2.
These calculations show that the eight knot is not a trefoil,

nor is it the unknot, and that the Conway polynomial does not
distinguish the right trefoil from the left one. Actually, the two
trefoils are not isotopic to each other – we shall prove this by
using the Jones polynomial (Lecture 4). Thus we see that the
Conway polynomial is not a complete invariant.

2.3. Existence of the Conway polynomial

We shall need need the following lemma, which will also be useful
in other contexts, in particular in Lectures 3 and 4.
Lemma 2.1. Any link diagram can be transformed into a trivial
link diagram by an appropriate series of crossing changes.
Proof. We shall prove the lemma for knots and leave the (easy)
generalization to arbitrary links to the reader. Suppose we are
given a knot diagram K. Let us choose an arbitrary point P on
K and move along the knot in the direction of orientation until
we reach the first crossing point 1; if 1 is an underpass for us, we
do not make a crossing change at 1; if 1 is an overpass for us, we
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do make a crossing change at 1. We continue our motion until we
come to a new crossing point 2 (it may happen that we will first
come through 1 again if the knot has a little loop near 1, as in the
Example in Fig. 2.1 (a)); if 2 is an underpass for us, we do not
make a crossing change at 1, otherwise we do. We then go on to
the third crossing point 3 and make (or do not make) a crossing
change there according to the same rule as before, and continue
further in the same way until we return to P . As the result, we
obtain a new knot diagram K ′. For the example in Fig. 2.1 (a),
it is shown in Fig. 2.1 (b).

Figure 2.1. Trivializing a knot diagram by crossing changes

Now let us prove that K ′ is a diagram of the unknot. To do that
we shall trace out a knot K ′′ in space (near the horizontal plane
“almost containing” K ′) that will be obviously equivalent to K ′.
To do that, we start at P and move along and vertically above
the curve K ′, uniformly rising upward very very slowly and as
we go around K ′ until we come back to some point P ′ near P ,
and then move down to close up the curve at P .
To prove that K ′′ (and hence K ′!) is the unknot, it suffices to

look at K ′′ from a point in the horizontal plane (from the “eye”
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in Fig.2.1(b)): we will then see a winding closed curve without
self intersections. This proves the lemma.

Theorem 2.1. There exists a unique assignment ∇ : L → Z[x]
that takes any oriented link diagram L ∈ L to a polynomial in x
with integer coefficients so that the following three axioms hold:

I. Invariance: ∇(L) = ∇(L′) if L is ambient isotopic to L′.

II. Normalization: ∇
(
©

)
= 1, where © denotes the unknot.

III. Conway skein relation: ∇(L+)−∇(L−) = x∇(L◦), or

∇
( )

−∇
( )

= x∇
( )

where L+, L−, L◦ are identical link diagrams outside a small disk,
inside which they are as pictured inside the dotted circles.

Proof. First, assuming existence of an assignment ∇ : L → Z[x]
staisfying axioms I, II, III, we will show by induction on n that
for any link diagram L with ≤ n crossings, the polynomial ∇(L)
is uniquely determined by the three axioms.
The base of induction is satisfied, because a link diagram L

without crossings is either the unknot (in which case its polyno-
mial is equal to 1 by axioms I and II) or a trivial m-component
link with m ≥ 2, in which case its polynomial is zero, as can be
proved similarily to the case m = 2 considered above).
We assume (induction hypothesis) that for any link diagram

L with ≤ n − 1 crossing points ∇(L) is uniquely determined
by the three axioms. Let us consider an arbitrary link diagram
with n crossings and choose one of the crossings. Denote this link
diagram by L+ if the chosen crossing is positive and by L− if it
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is negative. In either case, by the skein relation, we have

(1) ∇(L+)−∇(L−) = x∇(L◦),

where Lo denotes the corresponding link with n − 1 crossings.
Since we know the right-hand side (by the induction hypothesis)
it remains to show that one of the two terms on the left-yand
side is uniquely determined by the axioms.
To do that, we will show, for a fixed value of n, by induction

on the unknotting number k (i.e., the smallest k such that the
link can be trivialized by k crossing changes) that, for any link
diagram L with n crossings and unknotting number k ≤ n, the
polynomial ∇(L) is uniquely determined by the axioms. When
k = 0, this is true because the assertion is the same as the base
of induction (n = 0) considered above. Let us assume that it is
true for k − 1 and prove it for k.
Consider a link diagram with n crossings and unknotting number

k. Let us consider two cases. In the first case, let k = 0. Then the
link L under consideration must be trivial; we then claim that
∇(L) = 1 if L has one component and ∇(L) = 0 if it has more
than one. We have the following statement:

Fact. If a trivial oriented link L has one component, then its
Alexander polynomial, as well as its Conway polynomial, is equal
to 1, and if it has more than one, its Alexander polynomial, as
well as its Conway polynomial, is equal to 0.
We do not prove this statement because it is based on the nonele-
mentary definition of the Alexander polynomial (involving homo-
logy theory and a nontrivial topological construction) and the
fact that the Conway polynomial can be defined via the Alexander
polynomial by a change of variable.
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Now let us consider the second case, i.e. let k > 0.
Then there is a crossing in the diagram at which the crossing

change produces a link diagram with unknotting number n− 1.
If that crossing is positive, we denote our diagram by L̃+, and by
L̃− if it is negative. Then, in any case, by the skein relation, we
have

(2) ∇(L̃+)−∇(L̃−) = x∇(L̃◦),

where L̃◦ is the corresponding link diagram with n− 1 crossings.
We know the value of the right-hand side (by the induction
hypothesis for n) and so it suffices to show that one of the two
terms on the left-hand side is determined by the axioms. But this
follows from the induction hypothesis (for k this time!), since one
of these terms (not the one containing the chosen link diagram,
but the other one!) must have unknotting number n−1 (because
of our special choice of crossing).
This concludes the induction on k and therefore the induction

on n, concluding our proof of the theorem.

2.4. Chirality, orientation-reversal and multiplicativity

Theorem 2.2. (a) The knot
←−
K obtained from an oriented knot

K by reversing its orientation has the same Conway polynomial:

∇(
←−
K ) = ∇(K)

(b) The mirror image K∗ of an oriented knot K has the same
Conway polynomial:

∇(K∗) = ∇(K).

The proof of (a) and (b) are the object of Exercises 2.8 and 2.9.
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2.5. Knot tables

Because of the unique decomposition theorem into primes, in
order to classify knots, it suffices to classify prime knots. This
has been done for knots with 16 crossings or less, first by hand
(for small crossing numbers), and then by computer. For a small
number (≤ 10) of crossings, it is customary to classify knots by
listing them (as pictures) in a knot table in increasing order of
their crossing number. This is done in Rolfsen’s classical (and
beautiful) knot table (you can look it up in the internet). Here
we present only a small table (7 crossings or less) in Fig.2.2.

01 31 41 51 52

61 62 63 71 72

73 74 75 76 77

Figure 2.2. Knot table for knots with ≤ 7 crossings

Traditionally, only one picture of a knot that does not coincide
with its mirror image is shown in the table. Thus the table in
Fig.2.2 shows the left trefoil, but not the right trefoil.
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2.6. Exercises

2.1. Compute the Conway polynomial of the left Hopf link.
2.2. Compute the Conway polynomial of the left trefoil. Is it the
same as that of the right trefoil? Can you conclude that the right
and left trefoils are isotopic knots?
2.3. Show that the figure eight knot is not isotopic to the trefoil
by computing its Conway polynomial.
2.4. Is the granny knot isotopic to one of the trefoils? To the
figure eight knot? To the unknot?
2.5.Using Reidemeister moves, show that reversing the orientation
transforms the knot diagram of the right trefoil into an isotopic
knot.
2.6. Show that the Conway polynomial of a link diagram consisting
of two components located in different half planes is equal to zero.
2.7. Show that the Conway polynomial of the trivialm-component
knot is zero.
2.8. Show that the Conway polynomial of a knot K does not
change if we replace K by its inverse knot

←−
K (i.e., the knot

obtained from K by reversing its orientation).
2.9. Show that the Conway polynomial of a knot K does not
change if we replace K by its mirror image K∗.
2.10. Does the analog of Theorem 2.2 (a), (b) hold for links?


