
Lecture 3

The Kauffman Bracket

In this lecture, we study the Kauffman bracket. In our course,
it plays an important, but auxiliary role: it is needed only to
define the famous Jones polynomial (this will be done in the next
lecture). The Kauffman bracket, like the Conway polynomial,
assigns a polynomial to each link diagram, but the links in question
are assumed nonoriented.
The Kauffman bracket is a fundamental tool in physics, more

important than the Jones polynomial (in particular in quantum
field theory), although the Jones polynomial also has a significant
relationship with physics (2-D statistical models).

3.1. Digression: statistical models in physics

In this section, we give a very rough idea of the notion of two-
dimensional statistical model, which has no direct bearing on
knot theory, but will serve, nevertheless, as the inspiration for the
definition of the main protagonist of this lecture – the Kauffman
bracket, which will be a kind of phony “partition function” of a
2-D “state model” determined by the given knot diagram. Let me
explain what the words in quotation marks mean.
Roughly speaking, a 2-D statistical (or state) model is a system

consisting of huge number of particles {pi} = P , represented by
points in the plane and joined by lines which indicate interactions
between particles. The particles can be in one of two states (spins):
“spin up” and “spin down” (traditionally shown by vertical vectors
pointing up and down, respectively) and the state of the system
is a picture of the particles supplied with spins and their inter-
actions – see Fig. 3.1.
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Figure 3.1. A state of a small part of a 2-D statistical model

A given model P consisting of n particles obviously has 2n

states, denoted s ∈ S(P ). The main characteristic of such a
model, called its partition function, is given by a formula such as

Z(P ) =
∑

s∈S(P )
exp
−1

kT

∑

pi,pj∈P
ε(s(pi), s(pj)),

where ε(·, ·) is a real-valued function expressing the “energy” of
interaction between two interacting (i.e., joined by a line in the
picture) particles, T is “temperature”, and k is the “Boltzman
constant”. We shall not explain the meaning of the words in
quotation marks in the above sentence – all we need to know
is that the formula is the sum over all states of the product of
something called interactions (the product – because of the main
property of the exponential function).

3.2. The “state” of a (nonoriented) knot diagram

Suppose we consider a crossing point of a nonoriented knot (or
link). Unlike crossing points of an oriented knot, among crossing
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points of nonoriented ones, we cannot distinguish positive and
negative crossings, as we did in the Conway skein relation. However,
at each crossing point, there are two vertical angles of two different
kinds, that we call A-angles and B-angles (see Fig. 3.2 (a)).
A-angles are characterized by the fact fact that an observer

moving along the overpass first sees the A-angle to his right, and
then (after passing the crossing point), to his left. For
B-angles, it’s the other way around: an observer moving along
the overpass first sees the B-angle to his left, and then (after
passing the crossing point), to his right.
Now let us consider a (nonoriented) link diagram (such as the

one in Fig. 3.2). At each of the crossing point, let us choose
either an A-angle or a B-angle, and indicate the chosen angle by
drawing a short “stick” in it. Such a choice is called a state of
the link diagram (look at Fig. 3.2 (б)). If the link diagram has n
crossing points, there will be 2n possible states. In the figure, we
have shaded the A-angles, and the picture acquires a chessbord
coloring.

Figure 3.2. A-angles and B-angles and a state of a knot

Now let us look at a possible state of a simpler, more familiar
knot, say the eight knot (Fig.3.3(a)).
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Figure 3.3. A state of the eight knot

For a given state s ∈ S, let us denote the number of chosen
A-angles by α(s), and the number of B-angles by β(s). Obviously,
α(s) = n − β(s). Now let us “smooth out” the crossing points
along the sticks as shown in Fig.5.3(б). We then obtain a certain
number of topological circles; this number is denoted by γ(s). In
our example, α(s) = 2, β(s) = 1, γ(s) = 2.

3.3. Definition and properties of the Kauffman bracket

The Kauffman bracket assigns to a each link diagram K a
polynomial with integer coefficients in three variables a, b, c, de-
noted by 〈K〉 and defined by the formula

〈K〉 : =
∑

s∈S
aα(s)bβ(s)cγ(s)−1.

Like the formula for the partition function, here we have a sum
over all states of certain products. The calculation of the value
of 〈 · 〉 in our example (the eight knot) is the object of Exercise
3.1.
It easily follows from the definition that the Kauffman bracket

possesses the following properties:
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(I) Normalization: 〈©〉 = 1.

(II) Skein relation:〈 〉
= a

〈 〉
+ b

〈 〉

The skein relation for the Kauffman bracket differs from the
Conway skein relation. It should be understood as follows: we
have three nonoriented link diagrams L×, L=, L|| that are identical
outside three small disks, and are as shown in the figure inside
the disks; the relation says that the bracket of the diagram with a
crossing point inside the disk is equal to the sum of the brackets
of the two other brackets with coefficients a and b, i.e., we have

〈L×〉 = a〈L=〉 + b〈L||〉.

(III) Adding the unknot: 〈L t©〉 = c · 〈L〉.
Here the left-hand side of the equality Lt© is the link diagram

consisting of the link L and a topological circle that does not
intersect L. The equality shows that adding such a circle to a
link results in its Kauffman bracket being multiplied by c.

3.5. Is the Kauffman bracket invariant?

To check this, we will verify the invariance of the Kauffman
bracket w.r.t. the Reidemeister moves Ω2, Ω3, Ω1. If it is invariant
w.r.t. all three, it will follow by the Reidemeister Lemma that 〈 · 〉
is an isotopy invariant.
We begin with Ω2, and consider an arbitrary link which has,

inside a little disk, two arcs, one of which overpasses the other
twice. Our goal is to check that its Kauffman bracket is equal to
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the bracket of the same link, but with two nonintersecting arcs
in the little disk.
First, we apply the skein relation (II) to the upper crossing

point inside the disk under consideration, then apply it to the
lower crossing points of the two new disks, obtaining

〈K〉 = 〈 〉 = a〈 〉+ b〈 〉 =

= ab〈 〉+ a2〈 〉+ b2〈 〉+ ab〈 〉

We now apply property (III) to the second summand of the last
line, and after gathering like terms, we have

〈K〉 = 〈 〉 = (c+ a2 + b2)〈 〉+ ab〈 〉

The result is not what we wanted, but if we simplify the bracket
by putting b = a−1 and c = −a2 − a−2, we obtain the desired
result – namely the (simplified) bracket of our link with the disk
containing two nonintersecting arcs. From now on, by abuse of
notation, we shall denote the simplified bracket (which will be a
Laurent polynomial in the variable a) by the same symbol as the
old one.
The proof of the Ω3-invarance of the (simplified) bracket appears

in the figure below.
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〈 〉 =
(1)

a〈 〉+ a−1〈 〉 =
(2)

〈 〉 =
(3)

a〈 〉+ a−1〈 〉 =
(2)

The first line of the equation should be read from left to right
(we apply the skein relation again), the second line, from right
to left, after having noted that the equality between the middle
summands is obtained by applying Ω2 twice (which is legal, as
we have just shown).
It now only suffices to prove that our bracket is Ω1-invariant.

We have

〈 〉 = a〈 〉+ a−1〈 〉 = −a3〈 〉

Thus we see that the Kauffman bracket is not Ω1-invariant. For
the other little loop, we have similarly

〈 〉 = −a3〈 〉

Let us summarize our results in the following theorem.
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Theorem 3.1 The (simplified) Kauffman bracket 〈 · 〉 has the
following properties:
(I) 〈©〉 = 1;

(II) 〈L×〉 = a〈L=〉 + a−1〈L||〉;
(III) 〈L t©〉 = −(a2 + a−2) · 〈L〉;
(IV) 〈 · 〉 is Ω2- and Ω3-invariant
(V) 〈 · 〉 is not Ω1-invariant, the application of the Ω1-move

results in the multiplication of the bracket by the coefficient
(−a)±3, where the sign depends of the type of the disappearing
little loop.

3.6. Exercises

3.1. Compute the Kauffman bracket of the following knot diagrams

, ,

3.2. Compute the Kauffman bracket of the knot diagram of the
left trefoil and of the right trefoil.

3.3. Compute the Kauffman bracket of diagram of the eight knot
shown in Fig. 3.3.

3.4. Compute the Kauffman bracket of the knot diagram of the
knot 52 shown in the knot table 2.2.

3.5. Compute the Kauffman bracket of the knot diagram of the
knot 51 shown in the knot table 2.2.

3.6.Give a detailed proof of property (II) of the Kauffman bracket
(the Kauffman skein relation).
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3.7. Give a detailed proof of property (III) of the Kauffman
bracket.
3.8. Show that the Kauffman bracket is mutiplcative w.r.t. to
the connected sum of knots.
3.9. Compute the Kauffman bracket of the granny knot. Hint:
use the resullts of Exercises 3.2 and 3.8.


