
Lecture 4

The Jones Polynomial

The Jones polynomial was invented by Vaughan Jones in 1985.
It is a powerful knot and link invariant. Unlike the Conway
polynomial, it distiguishes a knot K from its mirror image K∗

whenever K is not isotopic to K∗. However, it is not a complete
invariant.
Jones’ original definition was based on deep topological and

algebraic constructions and facts, namely the Markov theorem
on the closure of braids and the Ocneano trace in the Temperley-
Lieb algebra. Our exposition, however, is elementary – follows the
work of Louis Kauffman and is based on the Kauffman bracket.

4.1. Definition via the Kauffman bracket

Let L be an oriented link or knot. Any link diagram has a
finite number of crossing points. In the definition of the Conway
polynomial, we distinguish positive and negative crossings (shown
in Fig. 4.1 (a) and (b), respectively).

(a) (b)

Figure 4.1. Positive and negative crossings

Using this distinction here, let us number the crossings points
of L and set ε(Pi) = +1 if the ith crossing point Pi is positive
and ε(Pi) = −1 if it is negative, and define the writhe w(L) of
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an oriented link diagram L by setting

w(L) : =
∑

{crossings pointsPi}
ε(Pi)

Lemma 4.1. The writhe w(·) is Ω2- and Ω3-invariant. Under
the Ω1 move, it changes by −1 (resp. +1) when the disappearing
crossing point is positive (resp. negative).

The proof is the object of Exercise 4.6.

Given an oriented link diagram L, we denote by |L| the same
link, but without the orientation. Recall that in the previous
lecture, we defined and learned to calculate the Kauffman bracket
〈|L|〉. We can now define the (preliminary version J( · ) of) the
Jones polynomial by setting

J(L) : = (−a)−3w(L)〈|L|〉.
Thus the Jones polynomial assigns to any oriented link L a
Laurent polynomial J(L) ∈ Z[a, a−1].

Theorem 4.1. The Jones polynomial J( · ) (in its preliminary
version) is an ambient isotopy invariant.

Sketch of the proof. It suffices to check that J(·) is invariant
w.r.t. the three Reidemeister moves. The fact that it is Ω2- and
Ω3-invariant immediately follows from Lemma 4.1 and item (V)
of Theorem 3.1. Its Ω1-invariance is less obvious, and is the object
of Exercise 4.3.

Remark 4.1. To pass from the preliminary version J of the Jones
polynomial to its final (=usual) version V , it suffices to make the
change of variables a = q−1/4. We will do this a little later, after
we have performed some calculations with the preliminary version
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in order to establish the main properties of the Jones polynomial.
(These calculations are more conveniently performed with the
variable a than with the variable q.)

4.2. Main properties of J( · )
(IJ) Normalization: J(©) = 1.
This immediately follows from item (I) of Theorem 5.1.

(IIJ) Skein relation for the Jones polynomial:

a4J(L+)− a−4J(L−) =
(
a−2 − a2

)
J(L◦),

or in standard symbolic form

a4J

( )
− a−4J

( )
= (a−2 − a2)J

( )

where L+, L−, L◦ are three oriented links, identical outside three
little disks, and are as shown inside the disks.
To prove this, we begin by writing out the skein relation for the

Kauffman bracket twice
〈 〉

= a
〈 〉

+ a−1
〈 〉

,

〈 〉
= a−1

〈 〉
+ a

〈 〉
.

then multiply the first equality by −a−1, the second by a, and
add the resulting equations, obtaining

a
〈 〉

− a−1
〈 〉

= (a2 − a−2)
〈 〉

.
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Now let us denote by L+, L−, L◦ the oriented links obtained
from the nonoriented links in the above relation by orienting them
as shown in Fig. 4.2.

L+ L− L0

Figure 4.2. The oriented links L+, L−, L◦

We then have

a〈|L+|〉 − a−1〈|L−|〉 =
(
a2 − a−2

)
〈|L◦|〉.

By definition of the writhe, we have w(L±) = w(L◦) ± 1, and
recalling the definition of the polynomial J(·), we obtain

a(−a3)J(L+)− a−1(−a)−3J(L−) = (a2 − a−2)J(L◦),

which is exactly the required relation.

(IIIJ) Adding an unknot:

J
(
L t©

)
= −

(
a2 − a−2

)
J(L).

The proof of this statement is the object of Exercise 4.4.

4.3. Axioms for the Jones polynomial

We now make the substitution a = q−1/4, obtaining the Jones
polynomial in its usual form

V (L) : = J(L)
∣∣
a=q−1/4.

The main properties of the Jones polynomial V (·) immediately
follow from the corresponding properties of the polynomial J(·)
proved above.
As we shall soon see, these properties may be regarded as

axioms for the Jones polynomial.
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(0) Invariance: The Jones polynomial J(L) ∈ Z[q1/2, q−1/2] of
any oriented link (in particular, of any oriented knot) L is an
ambient isotopy invariant.

(I) Normalization: J(©) = 1.

(II) Skein relation for the Jones polynomial:

qV

( )
− q−1V

( )
=

(
1√
q
−√

q

)
V

( )

(III) Adding an unknot:

V
(
L t©

)
= −

( 1√
q

+
√
q
)
V (L).

Theorem 4.2. The Jones polynomial J(·) is an ambient isotopy
invariant of oriented links satisfying axioms (I), (II), (III) and is
uniquely determined by these axioms.

Proof. The existence of the polynomial J(L) satisfying axioms
(I)-(III) was proved above. Let us prove uniqueness.
We shall prove this by induction on the number k of crossings.

If k = 0, then L is a trivial link, say with m components. In
that case, its Jones polynomial can be computed by successively
applying property (IIIJ). Its actual value is not important for the
proof – it is the object of Exercise 4.5.
Assuming uniqueness for k < n, let us prove it for k = n. We

shall prove this for a fixed n by induction on the number l of
crossing changes needed to trivialize the given link diagram L
(such a finite number exists by Lemma 2.1). If k = 0, then L is
a trivial link, and we know what J(L) is equal to. So we assume
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that uniqueness has been proved for links that can be trivialized
by l crossing changes. Let us prove it for l + 1.
Applying axiom (II) to any crossing point of the given link L,

we can write

qV

( )
− q−1V

( )
=

(
1√
q
−√

q

)
V

( )

Of the two summands on the left-hand side, at least one can be
trivialized by l crossing changes, and so its value is well defined
by the induction hypothesis on l. The link diagram appearing in
the right-hand side has n − 1 crossing points, and so the value
of the right-hand side is known inductively. Therefore, we can
calculate the unknown term in the left-hand side and thus obtain
the value of the Jones polynomial of any link diagram with n
crossings that can be trivialized by l + 1 crossing changes. Thus
induction on k and l concludes the proof of Theorem 4.2.

4.4. The knot semigroup

There is a natural binary operation in the set of (isotopy classes
of) knots known as the connected sum, denoted by # and defined
as shown in Fig. 4.3.

K1 K2, K1#K2⇒

Figure 4.3. Connected sum of oriented knots

It can be shown (by a mildly difficult geometric argument) that
the connected sum operation is well defined. A knot K is called
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prime if

K = K1#K2 =⇒ K1 =© or K2 =©.

Theorem 4.3. The connected sum operation supplies the set
of isotopy classes of knots with the structure of commutative
semigroup without inverse elements:

K 6=©, K#K ′ =© =⇒ K = K ′ =©,

and with unique prime decomposition property:

K 6=© =⇒ ∃!{P1, . . . , Pn}, K = P1# . . .#Pn,

where all the Pi are prime.

4.5. Multiplicativity

The Jones polynomial behaves very nicely w.r.t. the connected
sum operation for knots, and there is nice formula for the Jones
polynomial for the disjoint union of two links (by the disjoint
union of two links, one means the link obtained by placing the
given two links in different half spaces and taking their union).
Indeed, we have the following theorem.

Theorem 4.4. (a) With respect to the connected sum operation
for knots, the Jones polynomial is multiplicative, i.e.,

V
(
K1#K2

)
= V

(
K1

)
· V
(
K2

)
.

(b)With respect to the disjoint union of links, the Jones polynomial
behaves as follows:

V
(
L1 t L2

)
=

(
1√
q
−√q

)
V
(
L1

)
· V
(
L2

)
.

The proof of this theorem is the object of Exercise 4.7.
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Remark 4.2. There is no well-defined connected sum operation
for multicomponent links, because there is no prefered way to
choose the components that we are to connect. Nevertheless, we
will use the notation L1#L2 to indicate any one of the possible
ways to connect the two links L1 and L2 (by specifying one com-
ponent in each link). In that notation, we have

V
(
L1#L2

)
= V

(
L1

)
· V
(
L2

)
.

The proof of this formula is the object of Exercise 4.6.

4.6. Chirality and reversibility

Theorem 4.5. (a) Reversing the orientation of all the components
of a link diagrams does not change its Jones polynomial.
(b) The Jones polynomial of the mirror image of a link diagram

L is obtained from the Jones polynomial of L by substituting q−1
for q.

The proofs of the two assertions of the theorem are the object
of Exercises 4.13 and 4.14, respectively.

4.7. Is the Jones polynomial a complete invariant?

The Jones polynomial, unlike the Conway polynomial, distin-
guishes the left trefoil from the right trefoil, as the reader can
verify by doing Exercise 4.2. Is it a complete invariant, i.e., do
we have the implication

V (L = V (L′)) =⇒ L ∼ L′ ?

The answer is “no” – a simple counterexample, obtained by taking
connected sums of links in different ways, appears in Exercise 4.9.
Vaughan Jones conjectured that his polynomial is a complete

invariant for prime knots, but his conjecture was very quickly



9

refuted by several knot theorists. A counterexample appears in
Fig.4.8.

Figure 4.8. Nonequivalent knots with same Jones polynomial

The proof of the fact that the two knots have the same Jones
polynomial is the object of Exercise 4.8. The fact that the two
knots are not equivalent will not be proved in this course.

4.8. Is V a Laurent polynomial in q?

The answer is given by the following theorem:

Theorem 4.5. (a) If the number of components of an oriented
link L is odd (in particular if it is a knot), then V (L) ∈ Z[q, q−1],
i.e., V (L) contains only terms of the form qk, k ∈ Z.
(b) If the number of components of an oriented link L is even,

then V (L) contains only terms of the form q(2k+1)/2, k ∈ Z.
Proof. We know from Exercise 4.5 that the Jones polynomial of
the trivial m-component oriented link is given by

(
− q−1/2 − q1/2

)m−1
= q(m−1)/2

(
− q−1 − 1

)m−1
,

so that both statements of the theorem hold for trivial m-compo-
nent links. We also know (from the proof of Theorem 4.2) that
V (L) can be computed from V of the trivial link by successively
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applying the Jones skein relation (II). Let us denote bym+,m−,m0

the number of components of L+, L−, L0, respectively. To prove
the theorem, it suffices to show that

(1) the numbers m+ and m− have the same parity;

(2) the numbers m+ and m0 have opposite parities.

Statement (1) is obvious (actually m+ = m−). To prove (2), it
suffices to show that m+ = m0± 1. The proof of that equality is
the subject of Exercise 4.10.

4.9. Knot tables revisited

As we mentioned in Lecture 2, because of the unique decom-
position theorem into primes, in order to classify knots, it suffices
to classify prime knots. For knots with a small number of crossings,
say ≤ 9, prime knots (represented by their knot diagrams) are
listed in knot tables. In these tables, only one picture of a knot
that does not coincide with its mirror image is usually shown. The
Jones polynomial has been calculated for all these knots, and it
turned out that the Jones polynomials of any pair of different
prime knots with ≤ 9 crossings are different, which means that

the Jones polynomial classifies prime knots with ≤ 9 crossings,

so that Jones’ conjecture is true for these prime knots.
For larger values of the crossing number, this is no longer true,

as we saw above (Fig. 4.8). The number of knots with given
crossing number c grows exponentially with c, in particular, there
are 3 prime knots with 6 crossings, 7 prime knots with 7 crossings
(as can be seen in the knot table in Fig. 4.6), 166 with 10 crossings,
and 1 388 705 with 16 crossings.
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01 31 41 51 52

61 62 63 71 72

73 74 75 76 77

Figure 4.6. Knot table for knots with ≤ 7 crossings

For this reason, for a large number of crossings, the computer
is used to produce knot tables. In them, knots are not presented
as pictures, but by a special numerical encoding known as the
Dowker–Thislethwaithe code of the knot.
To generate the Dowker–Thistlethwaite code, move along the

knot using an arbitrary starting point and direction. Label each
of the n crossings with the numbers 1, . . . , 2n in order of traversal
(each crossing is visited and labelled twice), with the following
modification: if the label is an even number and the strand followed
is an overcrossing, then change the sign on the label to be a
negative. When finished, each crossing will be labelled a pair
of integers, one even and one odd. The Dowker—Thistlethwaite
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notation notation is the sequence of even integer labels associated
with the labels 1, 3, . . . , 2n− 1 in turn.
For example, a knot diagram may have crossings labelled with

the pairs (1, 6), (3,−12), (5, 2), (7, 8), (9,−4), (11,−10). Then the
Dowker–Thistlethwaite code for this labelling will be the sequence:
6,−12, 2, 8,−4,−10 (or any of its cyclic permutations).
It can be shown that any prime knot is uniquely determined

by its Dowker—Thistlethwaite code. The current software that
produces knot tables is called “Knotscape” and is due to Thisleth-
waite, Weeks, and Hoste.
There are also tables of prime links (their definition is the

object of Exercise 4.11) for links with 13 crossings compiled by
Thislethwaite. The reader can try to construct prime link tables
for links with a small number of crossings (Exercise 4.12).

4.9. Exercises

4.1. Prove Lemma 3.1 in the general case of multicomponent
links.

4.2. Compute the (preliminary versions of) Jones polynomials of
the two trefoils. Are they isotopic?

4.3. Prove the Ω1-invariance of the Jones polynomial J(·) (preli-
minary version).

4.4. Prove property (IIIJ) of the Jones polynomial J .

4.5. Compute the Jones polynomial of the trivial m-component
link and show that it equals

(
− q−1/2 − q1/2

)m−1.
4.6. Prove the formula in Remark 4.2.
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4.7. Prove Theorem 4.2. (Hint: use the definition of the Jones
polynomial via the Kauffman bracket and the state sum definition
of the Kauffman bracket.)

4.8. Show that the two knots in Fig.5.4 have the same Jones
polynomial. Hint: You need not explicitly compute the Jones
polynomials of the two knots – it suffices to order the crossing
points to which you apply the skein relation so that it yields the
same result at each step.

4.9. Show that the two links in the figure below have identical
Jones polynomials, but are not ambient isotopic.

4.10. Show that m+ = m0 ± 1 in the proof of Theorem 6.5.

4.11. Define the notion of prime link and give examples (if any)
of prime links with 3 and 4 crossings.

4.12. Compile a table of prime links with ≤ 5 crossings.

4.13. Prove that the Jones polynomial of the mirror image L∗ of
a link diagram L is obtained from the Jones polynomial of L by
replacing q by q−1.

4.14. Prove that the Jones polynomial of an oriented link is
unchanged if the orientations of all its components are reversed.

4.15. (a) Compute the Jones polynomial of the eight knot in two
ways: by using the definition (via the Kauffman bracket) and by
using the axioms of the Jones polynomial (including the Jones
skein relation).
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4.16. Draw a picture of the knot with Dowker—Thistlethwaite
code 6,−12, 2, 8,−4,−10.
4.17. Write down the Dowker—Thistlethwaite code of the eight
knot.


