
Lecture 5

Braids

Braids, like knots and links, are curves in R3 with a natural
composition operation. They have the advantage of being a group
under the composition operation (unlike knots, all braids have
inverses). The braid group is denoted by Bn. The subscript n is a
natural number, so that there is an infinite series of braid groups

B1 ⊂ B2 ⊂ · · · ⊂ Bn ⊂ . . .

At first, we shall define and study these groups geometrically,
then look at them as a purely algebraic object via their presenta-
tion obtained by Emil Artin (who actually invented braids in the
1920ies). Then we shall see that braids are related to knots and
links via a geometric construction called “closure” and study the
consequences of this relationship.
We note at once that braids play an important role in many

fields of mathematics and theoretical physics, exemplified by such
important terms as “braid cohomology”, “braided vector space”,
“braided monoidal category”, “braided Hopf algebra”, and this is
not due to their relationship to knots. But here we are interested
in braids mainly because of their relationship to knots and links.

5.1. Geometric braids

A braid in n strands is a set consisting of n pairwise noninter-
secting polygonal curves (called strands) in R3 joining n points
aligned on a horizontal line L to n points with the same x, y
coordinates aligned on a horizontal line L′ parallel to L and
located lower than L; the strands satisfy the following condition:
when we move downward along any strand from a point on L to
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a point on L′, the tangent vectors of this motion cannot point
upward (i.e., the z-coordinate of these vectors is always negative).

Figure 5.1. Examples of braids

Two braids are called equivalent (or isotopic) if there is a sequence
of braids in which avery braid is obtained from the previous one
by a ∆-move.
Two braids b and b′ with the same number of strands have

a natural composition operation, consisting in identifying the n
lower endpoints of b with the upper endpoints of b′ (see Fig. 6.2
for the case n = 4).

× =

Figure 5.2. Composition of braids
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It is easy to see that the composition operation is well defined
on equivalence classes of braids. In what follows, we will use the
term braid on n stands (or simply n-braid or braid) both for
concrete geometric braids and for equivalence classes – the reader
will understand what is meant from the context.

5.2. The geometric braid group Bn

Theorem 5.1. For any n ≥ 1, the set (of equivalence classes) of
braids forms a group, denoted by Bn.
Proof. The neutral element is the braid all of whose strands are
straight vertical lines. The composition operation is obviously
associative. Any braid has an inverse, namely its mirror image
w.r.t. the horizontal plane containing its lower endpoints (this is
clear from Fig.5.2).

Figure 5.3. Inverse braid

This completes the proof of the theorem.
It is easy to see that B1 = 0 and B2

∼= Z. Is the group Bn

Abelian? The answer is “no”, provided n ≥ 3; finding an example
is easy (Exercise 5.1).
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Is the group Bn finitely generated? The answer is yes, Bn has
n− 1 canonical generators

b1, b2, . . . , bn−1.

They are shown on the left-hand side of Fig. 5.4.

Figure 5.4. Braid generators

The right-hand side of the figure shows how a 5-braid can be
expressed as the product of canonical generators. This constuction
is general.

5.3. Digression on group presentations

Readers familiar with the notion of group presentation can skip
this section and go on to the next one.
Roughly speaking, a group presentation of a groupG is a method

for defining the group by listing its generators and the relations
that these generators must satisfy.
Thus the free group in n generators Fn is represented in the

form
Fn ↔ 〈g1, g2, . . . gn | 〉,
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(following tradition, we do not explicitely indicate the trivial
relations

gig
−1
i = g−1i gi = e, gje = egj = gj,

which are satisfied by any group, so only the generators are
indicated in the presentation of free groups). Thus the free group
Fn in n generators is defined as the set of equivalence classes of
words in the alphabet g1, g−11 , g2, g

−1
2 . . . gn, g

−1
n , where two words

are considered equivalent if one can be transformed into the other
by means of the trivial relations. For example, in F3 we have
g1 = g2g

−1
2 g1g

−1
3 g3 because

g1 = eg1 = (g2g
−1
2 )g1 = (g2g

−1
2 g1)e = (g2g

−1
2 g1)(g

−1
3 g3).

The group of residues modulo n is presented in the form
Z/nZ↔ 〈g | gn = e〉,

while the direct sum of two copies of the integers is presented as
Z⊕ Z↔ 〈g, h | ghg−1h−1 = e〉.

The formal definition is as follows: a group presentation in the
alphabet

A =
{
g1, g

−1
1 , g2, g

−1
2 , . . . , gn, g

−1
n

}
of a group G is an expression of the form

G↔ 〈g1, g2, . . . , gn : R1 = R2 = . . . Rk = e〉,
where theRj are words in the alphabetA ifG ∼= Fn/〈〈R1, . . . Rk〉〉,
where 〈〈R1, . . . Rk〉〉 denotes the minimal normal subgroup contai-
ning the elements R1, . . . Rk.
Although the presentation of groups provides us with a conve-

nient way of performing calculations with elements of the group
(for examples, see below), it doesn’t always help to identify the
presented group (we will discuss this in Sec. 5.5 below).
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The presentation of a group G ↔ 〈gi, Rj〉 allows to perform
calculations within the group by replacing Ri by the neutral
element e (and vice versa) and using the trivial relations. Here is
an example of a calculation in Z⊕ Z:

ghg−1h−1 = e =⇒ (ghg−1h−1)(hg) = e(hg) =⇒

=⇒ ghg−1(h−1h)g = e(gh) =⇒ ghg−1g = hg,

which means that the two elements hg and gh in Z⊕Z are equal,
i.e., represent the same element of the group Z⊕ Z. Read these
calculations carefully and identify the specific relations used at
each step.

5.4. Artin presentation of the braid group

The braid group Bn was discovered by Emil Artin in 1925 as
a geometric object, but he soon obtained its purely algebraic
interpretation by writing out its presentation.

Theorem 5.2. The geometric braid group Bn has the following
presentation:〈

b1, . . . , bn−1 | bibi+1bi = bi+bibi+1, i < n− 1,

bibj = bjbi, |i− j| ≥ 2
〉
.

About the proof. It is easy to show that the generators bi of
Bn satisfy the relations indicated in the presentation – one must
simply take a good look at Fig. 5.5. The fact that these relations
suffice to determine Bn is not at all obvious: we omit its proof.
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i i+1 j j+1 i i+1 j j+1

=

i i+1 i+2 i i+1 i+2

=

Figure 5.5. Geometry of the braid relations

Further algebraic study of the braid group is outside of the
scope of this course. Here we only mention that that the braid
group has important applications in topology, complex analysis,
theoretical physics, but it interests us because there is a simple
construction, called closure (see Sec. 5.6 below), that assigns a
knot or link to any braid.
But before going on to this, we digress on algorithmically undeci-

dable problems in group theory and knot theory.

5.5. Digression on undecidable problems

In this section, I will digress about decidable and undecidable
problems in group theory (in particular in the braid group) and in
knot theory. These topics will not be studied in the course, there
will be no proofs, but in studying knots, links, and braids, it is
necessary to know what problems in the theory are solvable in
principle and what problems are undecidable (cannot be solved in
principle). Also, the undecidability of many fundamental problems
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of group theory, which are not related to knot theory in any way,
are part of the basic mathematical culture that students must
acquire sooner or later – the sooner the better, in my opinion.

We begin with some bad news. Let G be a group presented as
〈g1, . . . , gn |R1 = · · · = Rk = e〉 Then the word problem in G is
as follows: Does there exist an algorithm which, given two words
in the alphabet {g1, g−11 . . . gn, g

−1
n }, tells us whether these two

words represent the same element of G?
The first bad news is

Fact 1. There exist groups for which the word problem is unde-
cidable, and most (in a certain natural sense) groups have this
property.
Fortunately for us, here is some good news:

Fact 2. The word problem in the braid group Bn is decidable for
any n.
The conjugation problem in G is as follows: Does there exist

an algorithm which, given two words w1, w2 in the alphabet
{g1, g−11 . . . gn, g

−1
n }, tells us whether these two words are conjugate

inG, i.e., whether there exists a word w such that ww1w
−1 = w2?

The bad news here is
Fact 3. There exist groups for which the conjugation problem is
undecidable, and most (in a certain natural sense) groups have
this property.
But we have the following good news:

Fact 4. The conjugation problem in the braid group Bn is decidable
for any n.

However,
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Fact 5. There exists no algorithm which, given a group presen-
tation, correctly answers the following questions: Is the corres-
ponding group trivial? Is it Abelian? Is it cyclic? Is it amenable?
as well a many other quations of that type.

We conclude this digression by looking at algorithmic decida-
bility in knot theory. The main problem of knot theory, namely,

Does there exist an algorithm which, given two knot diagrams,
correctly tells us whether they represent the same knot?

has a positive solution. In particular, this means that there exists
an algorithm which, given a knot diagram, correctly tells us
whether it represents the unknot.
Unfortunately, the proofs of Fact 5 are practiaclly useless “exis-

tence theorems” – the existence of the required algorithm is rigo-
rously proved, but the actual algorithm is not sufficiently well
described to implement it as a progam for humans and/or com-
puters.

5.6. Closure of a braid

The closure operation for braids is defined as shown in Fig. 5.6.
In the figure, we see that the closure of a braid can be an oriented
knot (as in Fig.5.6(a)) or an oriented link (as in Fig.5.6(b)). The
closure of a braid b is denoted by cl(b).
In fact, any oriented link can be obtained as the closure of

an appropriate braid, as the following theorem, due to James
Alexander, tells us.

Theorem 5.3. For any oriented link L, there exists a braid b
such that cl(b) = L.
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(a)

(b)

Figure 5.6. Closures of braids

Proof. We first illustrate the main ideas of the proof by Fig.
5.7, which shows how to find a braid whose closure is the eight
knot 41. This is done in two steps. In the first one, we isotope
the given knot into a circular one, i.e., an oriented knot whose
tangent vector is always directed to the left when we look at
it from a fixed point, called the center. In the second step, we
“unroll” the circular knot into a closed braid.

C
CC

Figure 5.7. Finding a braid whose closure is the eight knot
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In the general case of an arbitrary knot K, it suffices to prove
that we can isotope it into a circular one, because the unrolling
procedure is the same as in the particular case of the eight knot.
To perform this isotopy, we first choose the center point C some-
where in the middle of the diagram and paint in red all the edges
of the knot that are oriented in the wrong direction (i.e., point
to the right, instead of the left, if observed from C). Let [A,B]
be such an edge. Without loss of generality, we can assume that
no more than one edge of K crosses [A,B], because if there is
more than one, we simply subdivide [A,B] into smaller edges,
each crossed by only one other edge of K.

A

B

C

O

A

B

C

O

(a)

A

B

C

O

A

B

C

O

(b)

Figure 5.8. Proof of the Alexander theorem

We consider two cases. In the first, the edge that crosses [A,B]
forms an underpass. We then choose a point O “behind and
above” C (see Fig. 5.8 (a)) and perform the ∆-move replacing
[A,B] by [A,O]∪ [O,B]; if O is high enough, this will indeed be
a legal ∆-move.
In the second case, when the edge that crosses [A,B] forms

an overpass, we choose the point O “behind and below” C and
perform the same ∆-move. Note that no new red edges arise in
these constructions, so that we can successively get rid of all the
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red edges, obtaining a circular knot. This proves the theorem for
arbitrary knots.
The proof for arbitrary links is similar and left to the reader

(Exercise 5.14).

5.6. Exercises

5.1. Show that the group B3 is not Abelian.

5.2. Express the braids shown in Fig. 7.1 in terms of the canonical
braid generators.

5.3. Are the two 4-strand braids on the left hand side of Fig. 7.2
isotopic?

5.4. Prove that the group presented as 〈 g| 〉 (the free group in
one generator) is isomorphic to Z (the additive group of integers).

5.5. Prove that a group whose generators pairwise commute (i.e.,
ghg−1h−1 = e for any pair of generators g, h) is Abelian.

5.6. Find a presentation of the permutation group of n objects
Sn.

5.7. Prove that the group with two commuting generators is
isomorphic to Z⊕ Z.

5.8. Construct an epimorphism of the braid group Bn onto the
permutation group on n− 1 elements.

5.9. Find a braid whose closure is the 71 knot.

5.10. Find a braid whose closure is the 52 knot.

5.11*. A braid is called pure if the endpoints of each strand have
the same x, y coordinates. Prove that pure braids on n strands



13

form a subgroup of Bn denoted PBn and find a minimal set of
generators for PBn.
5.12. Show that the the conjugate of a given braid by another
braid has the same closure as the given braid, i.e., for all braids
b, b0 ∈ Bn we have cl(b−1 b0 b) = cl(b).
5.13. If a braid b ∈ Bn can be expressed in terms of the generators
b1, . . . , bn−2, then cl(b b±1n−1) = cl(b).
5.14. Prove the Alexander theorem for links.
5.15. Find a presentation of the braid groupB3 (only one relation
suffices).


