
Lecture 6

Vassiliev Invariants

In this lecture, we begin the study of Vassiliev invariants, a.k.a.
Gusarov-Vassiliev invariants or finite-type knot invariants. There
is an infinite series of Vassiliev invariants, each one is a real-valued
(or complex-valued, if we prefer) function v : K → C defined on
the set of oriented knots.
Vassiliev’s construction of his knot invariants is a particular

case of a very general construction, which may be called the
Thom–Arnold–Vassiliev discriminant method. The main idea of
the method is the following. In order to study the given nice
generic objects (say knots, i.e., smooth embeddings S1 7→ R3)
we study, simultaneously with the nice objects, their singular
analogs (singular knots, i.e., smooth maps S1 7→ R3). The set
S of all singular knots has a natural infinite-dimensional linear
space structure, in which knots form an everywhere dense open
subset K; the set ∆ := S \ K is the discriminant of the system,
it is stratified as ∆ = ∆1 ∪ ∆2 ∪ . . . , where ∆1 is the set of
singular knots with one transversal self-intersection, ∆2 is the set
of singular knots with two transversal self-intersections, and so
on. The set ∆1 is of codimension 1 in the linear space S and
divides S into compartments, in which the all points (knots)
have the same values of any given Vassiliev invariant v. When
we move from one compartment to an adjacent one, the value of
v undergoes a jump determined by the “Vassiliev skein relation”.
For the details, see below.
We shall introduce the Vassiliev invariants axiomatically, assu-

ming that functions satisfying the given axioms exist, learn how
to compute them in simple cases, and study their properties.
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There are two different ways of proving the existence of Vassiliev
invariants. The first, Vassiliev’s original proof based on the Vassi-
liev cohomology spectral sequence, lies outside the framework of
this course. The second is based on the Kontsevich integral, which
we shall briefly discuss in one of the subsequent lectures.
It is conjectured that Vassiliev invariants are complete, i.e., two

knots k1, k2 are not ambient isotopic if and only if there exists
a Vassiliev invariant v : K → C such that v(k1) 6= v(k2). It can
be shown that Vassiliev invariants are stronger than the Jones
polynomial: the coefficients at different powers of q of the Jones
polynomial of a knot can be recovered from the values of certain
Vassiliev invariants of that knot.

6.1. Basic definitions

Denote by K the set of oriented knots, i.e., smooth emdeddings
k : S1 → R3. By Σ denote the set of immersions i : S1 → R3,
i.e., smooth maps whose singularities consist of a finite number
of transversal self-intersections. In particular, Σ0 = K, elements
of Σ1 have one self-intersection, those of Σ2 have two, and so on.
We have the following infinite sequence

K = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn ⊂ · · · ⊂ Σ =

∞⋃

n=0

Σn.

Elements of Σn for n ≥ 1 are called singular knots with n double
points, the set ∆ = ∪n≥1Σn is the discriminant, the set Σ1 is the
generic part of the discriminant ∆.
The set S of all smooth maps S1 → R3 has a natural infinite-

dimensional linear space structure denoted by C, the closure of
K is the whole space C, the closure Σ1 of Σ1 divides C into
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compartments all points of which are knots ambient isotopic to
each other, the generic part of the discriminant Σ1 in the neighborhood
of each of its points is a surface of codimension 1 in the linear
space S. We fix an orientation on Σ1.

Remark 6.1. Note that Σ does not coincide with whole linear
space S: for example, any smooth curve with a single triple
transversal self-intersection point lies in S, but does not belong
to Σ. The stratifications of Σ and of ∆ indicated above do not
coincide with the stratifications used by Vassiliev in his original
paper, but the approach developed here is based onthe same
principles.
Suppose that two knots k+, k− living in adjacent compartments

are joined by a path α that transversally intersects the generic
part Σ1of ∆ between the compartments at a point k0. This point
represents a singular knot with exactly one double point. Then
as we move along α, a crossing change at the point corresponding
to the double point of k0 occurs, a k+ is transformed into k−.
This is (very schematically!) illustrated in Fig.6.1, where k+ is a

trefoil that becomes an unknot after going through Σ1. The knots
on Σ1 are all singular with one double point, as is is the knot k0.
In the figure, Σ1 is represented as a graph in the plane, although
actually it is an infinite-dimensional (nonlinear!) subspace of co-
dimension one in infinite-dimensional linear space. The selfinter-
sections of Σ1 are shown as points (vertices of the graph), although
actually they are also nonlinear infinite-dimensional subsets Σ2(of
codimension two), its points being singular knots with two double
points. The “deeper parts” of the discriminant (Σk, k ≥ 3) are not
represented by anything in the figure, which is very schematical
and gives no idea of the complexity of the overall picture.
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Figure 6.1. The crossing change that occurs when traversing Σ1

A Vassiliev invariant is defined as a function v : Σ → C that
satisfies the Vassiliev skein relation

v(k+)− v(k−) = v(k◦)v([) = v(X)� v(U)
where ko is an arbitrary singular knot with n + 1 double points
(n ≥ 0), k+ and k− are singular knots with n double points
obtained by desingularizing ko as shown in the figure. We say
that v is a Vassiliev invariant of order ≤ n if it satisfies the
finite-type condition

v
∣∣
Σs

= 0 for any s > n + 1.

6.2. The one-term and four-term relations

The set Vn of all Vassiliev invariants of order ≤ n has a linear
space structure inherited from C

(v1 + v2)(k) = v1(k) + v2(k), (λv)(k) = λ · v(k).
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We have the following sequence of inclusions of linear spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ V∞ : =

∞⊕

n=1

Vn/Vn−1.

Vassiliev invariants have the following properties:
(I) One-term relation:v(S) = v(E)� v(H)
This easily follows from the Vassiliev skein relation if we assume

(which we do!) that any v ∈ Vn, n ≥ 0 is an ambient isotopy
invariant, but it is more convenient for us to prove a slightly
more general statement, namely that any Vassiliev invariant of
any singular knot of the type pictured below is zero

This is done by means of a lovely trick (see Exercise 5.1)

(II) Four-term relation:v(@)� v(?) + v(6)� v(5) = 0
To prove this, we apply the skein relation four times (using four

different double points)



6 v(@) = v(7)� v(=) = a� bv(?) = v(;)� v(>) = 
� dv(6) = v(:)� v(7) = 
� av(5) = v(;)� v(8) = d� b
where the letters a, b, c, d denote the value of the given Vassiliev
invariant v on identical ambient isotopic knots. Adding these four
equalities, we obtain

(a− b− (c− d) + (c− a)− (d− b) = 0.

as claimed.

6.3. Dimensions of the spaces Vn
There is an infinite number of Vassiliev invariants. We shall

learn how to compute the value of some of them (of small order)
for concrete knots a little later, but first let us try to answer
the following natural question: How “big” is the space Vn? Here
we shall characterize its “size” by its dimension, which has been
computed for n ≤ 12. We present the dimensions of the linear
spaces of Vassiliev invariants of order strictly equal to n, i.e.,
Vn := Vn/Vn−1, for n = 0, 1, 2, . . . , 12:

dimVn = 1, 0, 1, 1, 3, 4, 9, 14, 27, 44, 80, 132, 232, . . .



7

The proof is beyond the scope of this course, but we will find the
dimensions of Vn for n = 0, 1, 2, 3, 4. To do this, we shall need
the fundamental notion of chord diagram.

6.5. Chord diagrams
To each singular knot k, we asssociate a chord diagram as

follows: the knot k is an immersion of the circle S1 into R3; let us
number the double points of k in the order of their appearence
as we go around the curve k, mark their two preimage points on
S1 by the same number, and join each pair of identical numbers
by chords; the obtained figure, denoted D(k), is called the chord
diagram of the singular knot k. An example of this construction
is shown in Fig. 6.2.

Figure 6.2. Example of a chord diagram
Two chord diarams are considered identical if there is a bijection

between the chords preserving the order of their endpoints around
the circle. Thus a chord diagram of a knot is well defined, it
depends only on the knot and does not depend on the choice of
double point from which we began our numbering. By definition,
the chord diagram of any classical (i.e., nonsingular) knot is a
circle without any chords.
We shall need the following lemma:



8

Crossing Change Lemma 6.1. The value v(k) of a Vassiliev
invariant of order n of a singular knot k with n crossings does
not change under crossing changes.
Proof. Since the order of v is equal to the number of double
points of k, the finite type condition and the skein relation together
tell us that a crossing change “costs nothing”.

It follows from Lemma 6.1 that a Vassiliev invariant of order n
of a singular knot k with n crossings depends only on the chord
diagram of k, and so in that situation, we shall write v(D(k))
(where D(k) is a picture of the chord diagram) instead of v(k).

6.6. Vassiliev invariants of small order

We obviously have dimV0 = 1, because one can pass from any
knot diagram to the unknot by a succession of crossing changes
(Lemma 2.1), and these crossing changes “cost nothing”, because
in the particular case n = 0, the skein relation readsv([) = v(X)� v(U)
where the singular knot on the left-hand side of the equation has
exactly one double point and the two knots in the right-hand side
have no singularities. Therefore, we can set v(©) equal to any
real number, and it will satisfy the axioms of the theory. Thus
dimV0 = dimV0 = 1.
Now let n = 1. It turns out that we have

dim(V1 = dim(V1/V0) = 0,
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which means that n = 1 gives us no new invariants: all Vassiliev
invariants of order 1 are actually of order 0. The proof of this
disapointing result is the object of Exercise 6.4.
Fortunately, when we pass to n = 2, we obtain signficant

results. Denote by v2 the Vassiliev invariant of order 2 such thatv2(>) = 1; v2(
) = 0
and also assume that v2 vanishes on the chord diagram with two
nonintersecting chords.

Let us compute the value of v2 on the right trefoil k. By the
Vassiliev skein relation, we have:

Thus we obtain v2(righttrefoil) = 1. This is a meaningful result,
since it implies that the trefoil is not the trivial knot.
In our further computations, we show pictures of the knots

involved in the computation, but often omit writing v2( ) around
each knot.
It is easy to show (Exercise 6.5) that the value of v2 on the left

trefoil is the same as that on the right one. However, Vassiliev
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invariants of order three already distinguish the right trefoil from
the left one. It suffices to choose a Vassiliev invariant v3 whose
value on the chord diagram consisting of three pairwise intersecting
chords is equal to 1. The computation that follows shows that the
values of v3 on the left and right trefoil differ by 1, so that the
two trefoils are not isotopic:

Now let us compute the value of v2 of the 51 knot. We obtain

= − =

(
−

)
−
(

−
)

=

= − 2 =⇒ v2

( )
= 2v2

( )
+ v2

( )
= 3

This shows that the knot 51 is not isotopic to the trefoil. It
also shows, together with the calculation in Exercise 6.5, that
the knot 51 is not isotopic to the eight knot 41.

We are not going to learn how to compute the values of high
order Vassiliev invariants. These computations, which involve the
inductive construction of the so-called actuality tables, are rather
cumbersome.

6.6. Exercises

6.1. Prove the one-term relation in its more general form.
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6.2. Draw the chord diagrams of the following knots

6.3. Find singular knots with the following chord diagrams.�
6;F;7�

6.4. Prove that dimV1 = 0

6.5. Calculate v2 for the left trefoil.
6.6. Calculate v2 for the eight knot.
6.7. Calculate v2 for the 52 knot.
6.8. Give a detailed proof of the fact that dimV2 = 1.


