
Lecture 7

Combinatorial description of Vassiliev invariants

In the previous lecture, we defined Vassiliev invariants and
learned how to compute their values for concrete knots in the
simplest cases. To do this in more complicated situations, we
need an additional rather intricate tool, called “actuality tables”
(see CD-book, p.74). We will not study actuality tables, because
our primary interest is not the practical computation of concrete
values of v(k) ∈ C, v ∈ Vn, k ∈ K, but the study of the spaces Vn
themselves. We shall see that they have a rich algebraic structure
and possess a beautiful combinatorial description in terms of
chord diagrams. We begin with some algebraic preliminaries.

7.1. Digression: graded algebras

By definition, an algebraA over C is a linear space (over C) with
a commutative associative operator (the product) · : A×A→ A
such that

(αx+βy)·(γz) = αγ(x·z)+βγ(y·z) ∀α, β, γ ∈ C,∀x, y, z ∈ A.
A graded algebra A over C is an algebra presented as the infinite

sum of algebras A = A1 ⊕ A2 ⊕ · · · ⊕ An ⊕ . . . satisfying the
condition Ap × Aq ⊂ Ap+q. The subscript n is the grading.
The simplest nontrivial example of a graded algebra is the

algebra of polynomials C[x] with complex coefficients; for it, the
product is the ordinary product of polynomials and the grading
is the degree of the polynomial.
If the commutativity property of the algebra is replaced by

skew commutativity, xy = (−1)pq yx, x ∈ Ap, y ∈ Aq, then one
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obtains a skewcommutative algebra, important examples of which
are differential forms and cohomology groups.

7.2. The graded algebra of chord diagrams

Linear combinations with coeffficients in C of chord diagrams
with n chords have a natural linear space structure, denoted by
Dn for any n ≥ 0. Here is an example of an element of Dn:

D3 ∋ 2 − (
√
2 + i) +

√
3

The dimension of D3 is 5, because there are 5 different 3-chord
diagrams

, , , ,

which form a basis for D3.
Let D be the linear space D =

⊕∞
n=0Dn.

For any n ≥ 2, we define the four-term relation for n-chord
diagrams as

− + − = 0

where only two of the n chords are shown in each of the n-chord
diagrams, the remaining n − 2 chords (not shown) are exactly
the same in all four diagrams and do not have any endpoints in
the little fat arcs of the circles.
The use of the name “four term relation” is motivated by the

following statement:
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Lemma 7.1. If v ∈ Vn, then

v

( )
− v

( )
+ v

( )
− v

( )
= 0

where only two of the n chords are shown in the n-chord diagrams,
the n− 2 chords not shown are the same in all diagrams and do
not have any endpoints in the little fat arcs of the circles.

The proof is the object of Exercise 7.2.

We now define the one-term relation for n-chord diagrams as

= 0

where only one chord is shown and the other n − 1 chords have
no endpoints in the fat arc of the circle. The use of the name
“one-term relation” comes from the relation of the same name for
Vassiliev invariants of knots.

We can now define the algebra of chord diagrams ∆ as the linear
space ∆ =

⊕∞
n=0 ∆n, where each ∆n is the quotient space of

Dn by all possible one-term and four-term relations for n-chord
diagrams; ∆ is actually a graded algebra – the multiplication
operation will be defined below, but first, as an illustration, we
shall study ∆3.
In ∆3, the (equivalence classes of) the following three chord

diagrams

, ,

are zero by the one-term relation. By the four-term relation, we
have
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− + − = 0

the third summand is zero by the one-term relation, and so

= 2

which means that dim∆3 = 1.
We now define the product of two (equivalence classes of) chord

diagrams C1 ∈ ∆p, C2 ∈ ∆q as follows:

· = =

Lemma 7.2. The above product is well defined, i.e., it does not
depend on the choice of representatives and of the places on the
circles where the circles are glued together.

Sketch of the proof. The independance of the choice of repre-
sentatives is obvious. Let us prove that the product does not
depend on the choice of the place where the circles are glued
together. We will do this in the case of a concrete example,
namely

= = =
?

C0=C4

To prove that the 5-chord diagrams C0, C4 ∈ D5 are equivalent,
we move the upper endpoint of the fat chord in C0 counter-
clockwise successively over the next endpoint four times, obtaining
the chord diagrams C1, C2, C3, C4:
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Applying the four-term relation to C0, C1, C2, C3 and then to
C1, C2, C3, C4, we see that

C0 − C1 + C2 − C3 = 0 and C1 − C2 + C3 − C4.

Adding the last two equalities, we obtain C0 = C4, as required.
In the gereral case, the argument is similar.

Remark 7.1. The algebra of chord diagrams is actually a bial-
gebra: besides the multiplication defined above, it possesses a
comultiplication. We will not define this additional structure (see
the CD-book, p.92).

7.3. The Vassiliev–Kontsevich theorem

Let ∆n be the algebra of n-chord diagrams regarded as a linear
space; we denote by ∆∗n its dual space 1 , i.e., the space of linear
functions on elements of ∆n; recall that Vn denotes the linear
space of Vassiliev invariants of order ≤ n.

Theorem 7.1. For any n ≥ 0, there exists an isomorphism

αn : Vn/Vn−1 → ∆∗n.

We will not prove this deep theorem, which gives a simple
combinatorial description of the space of Vassiliev invariants,
but will construct the map αn. Let vn be a Vassiliev invariant
of order exactly equal to n. Its image must be a linear function

1The space ∆∗
n is denoted by CD∗

n in the CD-book, where it is called the “space of unframed weight
systems”.
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l : ∆n → C; by linearity it suffices to define l on a basis d1, . . . , ds
of ∆n. We set

l(di) = vn(di) for all i ∈ {1, . . . , s},
(The fact that the right-hand side of this equality is well defined
easily follows from the Crossing Change Lemma.)
The injectivity of αn is the object of Exercise 7.5, its surjectivity

can be proved by using the Kontsevich integral, which we will
study in the next lecture.
Recall that ∆ =

⊕
n≥0 ∆n is a graded algebra and therefore

∆∗ =
⊕

n≥0 ∆∗n inherits this structure via α−1n .
Thus for all n ≥ 0, the space V =

⊕
n≥0 Vn/Vn−1 of Vassiliev

invariants is a graded algebra.

7.4. Vassiliev invariants vs. other invariants

It turns out that the space of all Vassiliev invariants is more
powerful that any of the other previously known knot invariants:
in fact, the previously known invariants can all be expressed in
terms of Vassiliev invariants. In this section, we will state three
such results without proof.

Fact 7.1. The n-th coefficient of the Conway polynomial is a
Vassiliev invariant of order ≤ n.

In the Jones polynomial of a knot, let us substitute q = eh,
expand it into an infinite power series in h and denote by jn the
coefficient at hn.

Fact 7.2. The coefficient jn in the power series defined above is
a Vassiliev invariant of order ≤ n.
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The Casson invariant C is a classical integer-valued invariant
of homology 3-spheres. (Each homology sphere is obtained from
the ordinary 3-sphere by surgery along a knot K, so that C can
be regarded as a knot invariant.)
Fact 7.3. The Casson invariant C is equal to the second coef-
ficient of the Conway polynomial and is therefore a Vassiliev
invariant of order ≤ 2.
For the proofs, see the CD-book.

7.5. Exercises

7.1. Find the dimensions of the linear spaces D2 and D4.
7.2. Prove Lemma 7.1.
7.3.. Find the dimension of ∆4.
7.4. Find the dimension of ∆5.
7.5. Prove that the map αn is injective.
7.6. Prove the first two of the following relations

D =E+6; F+G = 25
F =6+5; 7 =D +F
F+E =D +5:

7.7. Prove the last three of the relations in the picture above.


