
Lecture 8

The Kontsevich Integrals

The Kontsevich integrals {Zm} constitute a beautiful and soph-
isticated tool whose main purpose is to prove the existence of
Vassiliev invariants by providing a proof of the Vassiliev–Kont-
sevich Theorem 7.1. These integrals actually form an infinite
series in m = 0, 1, 2, . . . and are assigned to any concrete knot
K : S1 → R3 from the class of “strictly Morse” knots. Their
values are elements of the algebra ∆m of chord diagrams and
their domains of definition are subsets of Euclidean space Rm.
In this lecture, we shall describe the Kontsevich integrals (in

the form originally defined by Kontsevich) for a specific trefoil
knot KTR, and calculate the integral Z2(KTR) in detail. We then
calculate the integral of a specific unknot H (having the shape
of a hump) and learn that Z2(H) 6= 0 = Z2(©). This means that
the original Kontsevich integrals are not isotopy invariants.
After that, we redefine the Kontsevich integrals, learn that their

new version is isotopy invariant, and explain in what sense they
provide a proof of the existence of Vassiliev invariants.

8.1. The original Kontsevich integral of a trefoil knot

Consider the trefoil knot

KTR : S1 → R3 = C× R

shown in Fig.8.1. Note that it is a strictly Morse smooth knot,
which means that it has finite number c of extrema (c = 4),
which are either maxima or minima and are located at different
levels of the t-axis.
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Figure 8.1. A strictly Morse trefoil

The Kontsevich integral Z(KTR) is defined as the series

Z(KTR) =

∞∑
m=0

1

(2πi)m
Zm(KTR),

where

Zm(KTR) =

∫
τ0≤t1<···<tm≤T

∑
P={(zj ,z′j)}

(−1)↓jDP

m∧
j=1

dzj − dz′j
zj − z′j

.

The domain of integration of the m-th integral is a subset of Rm;
for m = 2, it is the triangle shown in Fig. 8.2 below.
The sum inside the integral is taken over all choices of pairings,

a pairing being a pair of functions (zj, z
′
j) each of which is defined

on a strand of the knot – to each point (t, z) of that strand
each of the functions assigns the complex number z, which is
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the projection of the point (t, z) on the horizontal plane C; thus
the pairing is determined by a choice of two stands of the knot
located between the same pair of extrema. In the case m = 2,
there are two nontrivial pairings, the first one (z1, z

′
1) is shown in

Fig. 8.1.
The symbol ↓j in the expression (−1)↓j) stands for the number

of downward-oriented stands on which the pairing (zj, z
′
j) is de-

fined. Thus, for m = 2, for the first pairing, we have ↓j= 2.
The symbolDP stands for the element of the algebra ∆ determined

by the chord diagram obtained by joining by chords the inverse
images by KTR of the points at the same level on the chosen
strands of the knot. Thus for m = 2 for the first pairing, we have
DP = ⊗, where ⊗ is the chord diagram with two intersecting
chords, as can be seen in Fig. 8.1. In the case when there is only
one pairing at some levels of the knot (this happens near the
absolute minimum and the absolute maximum), we set DP = 0
(because of the one-term relation).
Finally, the last term under the integral sign is a complex-valued

differential m-form that is to be integrated (the other terms are
“constants” and can be taken out of the integral). Note that this
integral converges despite the fact that the denominators of the
differential 1-forms become equal to zero near the extrema – this
is a consequence of the one-term relation.

8.2. Calculation of the integral for m = 2

Letm = 2. Let us partition the domain of integration into three
triangles, two rectangles and one square as shown in Fig. 8.2. The
partitions corresponding to the two small triangles contribute
nothing to the integral (there is only one pairing, so DP vanishes
by the one-term relation). The reader will check (Exercise 8.2)
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that for all the pairings P in the two rectangles and the square,
DP is the 2-chord diagram with nonintersecting chords, so that
these domains contribute nothing (once again by the one-term
relation). There are, however, two nontrivial pairings corresponding
to the middle triangle – they are shown in Fig. 8.2.
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Figure 8.2. The nontrivial pairings for Z2(KTR)

As noted above, there are only two nontrivial pairings – the
ones shown in Fig. 8.2. It can be seen from Fig. 8.1 that ↓1 = 2.
A similar study of the second pairing (Exercise 8.3) shows that
↓2 = 0. Therefore, we can write

Z2(KTR) =

∫
τ0≤t1<t2≤T

∑
(P={(zj ,z′j)}

(−1)↓j ⊗ dz1 − dz′1
z1 − z′1

∧ dz2 − dz
′
2

z2 − z′2

=

[∫
τ0≤t1<t2≤T

(−1)2 ω2 +

∫
τ0≤t1<t2≤T

(−1)0 ω2

]
⊗

= ζ⊗,
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where ⊗ is the chord diagram with two intersecting chords,

ω2 =
dz1 − dz′1
z1 − z′1

∧ dz2 − dz
′
2

z2 − z′2
, and ζ = 2 ·

∫
τ0≤t1<t2≤T

ω2.

Thus we see that the (original) Kontsevich integral for m = 2
is equal to the chord diagram ζ⊗, where ζ is a complex number.
Altough the calculation of the exact value of ζ is a hopelessly
difficult task, it is not difficult to show that ζ 6= 0.
When m = 1, it is easy to show (Exercise 8.4) that the corres-

ponding integral is zero (more precisely, the zero element of the
graded algebra ∆ of chord diagrams).
For m > 2, the knot KRT , having only four strands between

its extrema, cannot produce more that two different pairings, so
that the integrals with m > 2 are of no interest.

8.3. Kontsevich integral of the hump

Consider the (trivial) knot H shown in Fig. 8.3. It is a smooth
strictly Morse knot – let us find its m-th Kontsevich integral.
Arguing as in the previous section, we note that the domain of
integrations of this integral is the same as that for the trefoilKTR,
that it can be subdivided into squares, rectangles, and triangles,
just as in Fig. 8.2, we can prove (Exercise 8.5) that that there
are two nontrivial pairings for Z2(H), one of which is shown in
Fig. 8.3.
It follows that Z2(KTR) is nonzero, which means that the ori-

ginal Kontsevich integral is not an isotopy invariant, contrary to
Kontsevich’s claim. This fact (and the counterexample H) was
noticed by Bar Natan in 2005, but this did not put an end to the
Kontsevich approach.
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Figure 8.3. Kontsevich integral of the hump

Bar Natan showed that the original Kontsevich integral Z is
invariant under isotopic deformations of Morse knots that do
not change the number of maxima and established the following
formula in the case when the Morse knot acquires one additional
maximum:

which should be understood as follows: Z is applied to two Morse
knots that are identical outside the circles and are as shown in the
picture inside the circles, the product “·” being the usual product
in the graded algebra ∆ of chord diagrams.
We now define a genuine knot invariant I , that we call the

(modified) Kontsevich integral by setting

I(K) :=
Z(K)

Z(H)c/2
.
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8.4. Results

We now state the main results concerning the (modified) Kontsevich
integral. For the proofs, see the CD book.
I. The integral Im(K) is defined (converges) for any strictly Morse
knot K.
II. For the unknot © presented as a circle in a vertical plane,

Im(©) = 0 (∀m).

III. The integral Im( · ) is an isotopy invariant of strictly Morse
smooth knots for all m.
IV. The integral Im is universal in the sense that for any m
and any strictly Morse smooth knot K there exists a linear map
l : ∆m → ∆m such that

Vm(K) = l ◦ (Im(K))∗,

where (Im(K))∗ is the linear space dual to the space Im(K).
Note that the last result implies the surjectivity of the map αn

(see Lecture 7) and thereby concludes the proof of the Vassiliev–
Kontsevich theorem.

8.5. Exercises.

8.1. Verify that for the three rectangles, the two small triangles,
and the square in the domain of integration (Fig. 8.2), the corresponding
chord diagrams all consist of two nonintersecting chords.

8.2. Check that for the second pairing (see Fig 8.2), we have
↓2= 0.

8.3. Show that for m = 1 the integral Zm(KRT ) is zero.
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8.4. Represent the eight knot K8 as a strictly Morse smooth
knot and compute the integral Z2(K8) (you need not calculate
the actual values of the integrals of the 2-forms).
8.5. Prove that there are two nontrivial pairings for Z2(H).
8.6. Construct an example of a smooth strictly Morse unknot H1

such that Z3(H1) is nonzero.


