Модулярные формы. Задачи

- 1. Проверьте, что естественный гомоморфизм $\mathrm{SL}_2(\mathbf{Z}) \to \mathrm{SL}_2(\mathbf{Z}/(N))$ сюръективен.
- **2**. Пусть L решетка. Проверьте, что отображение $e_N: (\frac{1}{N}L/L) \times (\frac{1}{N}L/L) \to \mathbb{C}^*$, задаваемое формулой $e_N(x,y) = e^{2\pi i \det A/N}$, где A матрица, переводящая $(\frac{w_1}{N}, \frac{w_2}{N})$ в (x,y), не зависит от выбора правильно ориентированного базиса (w_1,w_2) решетки L и определяет невырожденное кососимметрическое билинейное отображение со значениями в группе μ_N корней из единицы степени N. Это так называемое спаривание Вейля.
- **3**. Докажите, что при N > 3 у группы $\Gamma_1(N)$ нет эллиптических точек.
- **4**. Пусть p простое, а f(z) параболическая форма четного веса k для группы $\mathrm{SL}_2(\mathbf{Z})$, собственная для алгебры Гекке. Вычислите матрицы операторов T_p и T_p^* в базисе (f(z), f(pz)) подпространства $i_d(f) \subset S_k^{old}(\Gamma_1(p))$ и проверьте, что они не коммутируют, а значит, оператор T_p на $S_k(\Gamma_1(p))$ не является нормальным.
- **5**. В этой задаче будем считать, что $G = \Gamma_0(N)$. Модулярные формы для $\Gamma_0(N)$ представляют собой подпространство в модулярных формах для $\Gamma_1(N)$, отвечающее единичному характеру Дирихле, так что анемичная алгебра Гекке порождается операторами T_p для $p \nmid N$.
- а) Двойственность между $S_2(G)$ и $H_1(X_G, \mathbf{R})$ позволяет перенести операторы T_p на $H_1(X_G, \mathbf{R})$. Вычислите $T_p(\{x, y\}_G)$.
- б) Начиная с этого момента, будем предполагать, что N простое число. Проверьте, что отображение $\Gamma_0(N) \setminus \Gamma \to \mathbf{P}^1(\mathbf{Z}/(N))$, переводящее матрицу $\binom{a \ b}{c \ d}$ в $c/d \mod N$, является изоморфизмом правых Γ множеств (мы задаем \mathbf{P}^1 в аффинном виде $\mathbf{Z}/(N) \cup \infty$ и считаем, что $c/d = \infty$ при $d \equiv 0 \mod N$).
- в) Обозначим [r] отмеченный класс $\xi(r) = \{0, \frac{1}{R}\}_G \in H_1(X_G, \mathbf{R})$, где R какое-нибудь целое число, сравнимое с $r \mod N$ (матрица $\binom{1}{R} \in \Gamma$ отображается в r по п.б) Если $r = \infty$, то будем считать, что $[r] = \{i\infty, 0\}$ (матрица S отображается в ∞). Проверьте, что $[rS] = [-r^{-1}], \ [rST] = [1-r^{-1}], \ [r] = [-r]$ (действие комплексного сопряжения на $H_1(X_G, \mathbf{R})$ определяется его действием на римановой поверхности X_G). Убедитесь, что при $r \neq 0, \infty$ $[r] \in H_1(X_G, \mathbf{Z})$.
- г) Пусть N=11. Вычислите факторгруппу свободной абелевой группы, порожденной классами [r], где r пробегает обратимые вычеты $\mod 11$, по соотношениям, перечисленным в конце п.11 лекций (с учетом того, что $[1]+[0]+[\infty]=0$, откуда [1]=0). Эта факторгруппа (изоморфная $H_1(X_{\Gamma_0(11)},\mathbf{R})$) имеет ранг 2, а её инвариантная и антиинвариантная относительно комплексного сопряжения подгруппы ранг 1. Выразите базисы этих подгрупп через классы [r] и сосчитайте, как на базисных векторах действуют операторы T_2 и T_3 , определив таким образом собственные значения этих операторов на одномерном пространстве $S_2(\Gamma_0(11))$.