Листок 1

ТЕОРИЯ МИНИМАЛЬНЫХ МНОГООБРАЗИЙ II КОНЦЫ МИНИМАЛЬНЫХ ПОДМНОГООБРАЗИЙ

1. Пусть поверхность $\Sigma \subset \mathbb{E}^3$ задаётся графиком функции u со следующей асимптотикой

$$u(x) = a \ln r + b + \frac{c_1 x_1 + c_2 x_2}{r^2} + O(r^{-2}),$$

где $x = (x_1, x_2), r = \sqrt{x_1^2 + x_2^2}$. Докажите, что модуль гауссововй кривизны удовлетворяет $|K_q| = O(r^{-4})$. Здесь g — метрика индуцированная с евклидовой на Σ .

2. Докажите, что единственной вложенной полной минимальной поверхностью в \mathbb{E}^3 с одним концом является плоскость.

Указание: используйте принцип максимума.

- 3. Пусть Σ вложенная полная минимальная поверхность в \mathbb{E}^3 . Пусть ν поле единичных нормалей. Зафиксируем постоянное поле v на \mathbb{E}^3 Рассмотрим гладкую функцию на Σ $f_v = \nu \cdot v$. Докажите, что поле $f_v \nu$ является *полем Якоби*, т.е. функция f_v удовлетворяет уравнению Якоби $L_q f_v = 0$.
 - **4.** Пусть u_1, u_2 решения уравнения минимальных гиперповерхностей

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0,$$

на области $\Omega \subset \mathbb{R}^n$. Докажите, что функция $v = u_2 - u_1$ удовлетворяет уравнению вида

$$\operatorname{div}(a_{ij}\nabla v) = 0,$$

где матрица $(a_i j), i, j = \overline{1, n}$ положительно определена.

Указание: Рассмотрите отображение $F: \mathbb{R}^n \to \mathbb{R}^n$ определенное по правилу:

$$F(X) = \frac{X}{\sqrt{1+|X|^2}}.$$

Используйте формулу Ньютона-Лейбница, чтобы переписать $F(\nabla u_2) - F(\nabla u_1)$ в виде интеграла.

5. Пусть $\Sigma \subset \mathbb{E}^3$ — полная минимальная поверхность, отличная от плоскости, и g — индуцированная метрика на ней. Рассмотрим гауссово отображение $G \colon \Sigma \to (S^2, g_0)$. Докажите, что

(a)
$$G^*g_0 = -K_g g$$
; (b) $\Delta_{G^*g_0} = -\frac{1}{K_g} \Delta_g$.

Здесь K_g — гауссова кривизна (Σ, g) .

6. Приведите пример голоморфной кривой в \mathbb{E}^4 со стандартной комплексной структурой, имеющую бесконечную полную гауссову кривизну.

1