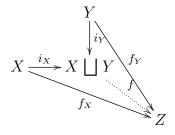
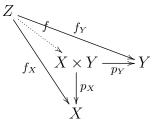
Топологические пространства и операции над ними

- 1. Введите топологию на следующих пространствах и докажите, что все они гомеоморфны (вещественное проективное пространство $\mathbb{R}P^n$):
 - а) прямые в \mathbb{R}^{n+1} , проходящие через начало координат;
 - b) сфера \mathbb{S}^n с отождествлёнными противоположными точками;
 - с) диск \mathbb{D}^n с отождествлёнными противоположными точками на границе.
- 2. Введите топологию на следующих пространствах и докажите, что все они гомеоморфны (комплексное проективное пространство $\mathbb{C}\mathrm{P}^n$):
 - а) комплексные прямые в \mathbb{C}^{n+1} , проходящие через начало координат;
 - b) фактор сферы $\mathbb{S}^{2n+1} = \{(z_0, \ldots, z_n) \in \mathbb{C}^{n+1} \colon |z_0| + \cdots + |z_n|^2 = 1\}$ по действию окружности $\mathbb{S}^1 = \{t \in \mathbb{C} \colon |t| = 1\} \colon t \cdot (z_0, \ldots, z_n) = (tz_0, \ldots, tz_n).$
- 3. Докажите, что:
 - а) $\mathbb{R}P^1$ гомеоморфно \mathbb{S}^1 ;
 - b) $\mathbb{C}P^1$ гомеоморфно \mathbb{S}^2 ;
 - с) Определите топологическое пространство $\mathbb{H}P^n$ и докажите, что $\mathbb{H}P^1$ гомеоморфно \mathbb{S}^4 ;
 - ${
 m d}$) ${
 m \mathbb{R}P^2}$ гомеоморфно листу Мёбиуса с приклеенным по граничной окружности диском.
- 4. Докажите, что:
 - а) Пространство всевозможных прямых на плоскости гомеоморфно листу Мёбиуса;
 - b) Группа SO(3) (конфигурационное пространство твёрдого тела с одной закреплённой точкой в пространстве) гомеоморфно $\mathbb{R}P^3$.
- 5. Пусть X и Y два топологических пространства. Обозначим через i_X : $X \to X \sqcup Y$ и i_Y : $X \to X \sqcup Y$ естественные вложения. Докажите, что дизъюнктное объединение обладает следующим универсальным свойством: для любого топологического пространства Z и непрерывных отображений f_X : $X \to Z$ и f_Y : $Y \to Z$ существует и единственно непрерывное отображение f: $X \coprod Y \to Z$ такое, что $f \circ i_X = f_X$ и $f \circ i_Y = f_Y$. Картинка:



6. Пусть X и Y — два топологических пространства. Обозначим через p_X : $X \times Y \to X$ и p_Y : $X \times Y \to Y$ естественные проекции. Докажите, что декартово произведение обладает следующим универсальным свойством: для любого топологического пространства Z и непрерывных отображений f_X : $Z \to X$ и f_Y : $Z \to Y$ существует и единственно непрерывное отображение f: $Z \to X \times Y$ такое, что $p_X \circ f = f_X$ и $p_Y \circ f = f_Y$. Картинка:



- 7. Докажите, что CW-комплекс компактен тогда и только тогда, когда он состоит из конечного числа клеток.
- 8. Докажите, что для CW-комплексов джойн ассоциативен.
- 9. Пусть $\underline{X} = \{X_1, \ldots X_n\}$ набор CW-комплексов. Обозначим через $Z(C\underline{X}, \underline{X})$ подпространство в произведении $\prod_{i=1}^n CX_i$, состоящее из точек, хотя бы одна координата которых лежит в основании конуса. Докажите, что $Z(C\underline{X}, \underline{X})$ гомеоморфно $X_1 * \cdots * X_n$.
- 10. Докажите, что CW-комплекс связен тогда и только тогда, когда связен его 1-остов.
- 11. Докажите, что любой симплициальный комплекс с конечным числом вершин можно вложить в \mathbb{R}^N для некоторого натурального N.
- 12. Пусть \mathcal{K} симплициальный комплекс и $\sigma \in \mathcal{K}$ некоторый симплекс. Определим звезду $\operatorname{st}(\sigma)$ и линк $\operatorname{lk}(\sigma)$ по формулам:

$$\operatorname{st}(\sigma) = \{ \tau \in \mathcal{K} \colon \tau \subset \sigma \}; \qquad \operatorname{lk}(\sigma) = \{ \tau \in \mathcal{K} \colon \tau \cup \sigma \in \mathcal{K}; \ \tau \cap \sigma = \emptyset \}.$$

Докажите, что $\operatorname{st}(\sigma) \cong \sigma * \operatorname{lk}(\sigma)$.