НМУ, Алгебра-2 Листок 10, 15,05,2023

Задача 1.

Пусть R — локальное кольцо. Докажите, что оно является кольцом дискретного нормирования тогда и только тогда, когда оно дедекиндово.

Задача 2.

Пусть α — корень многочлена $x^4 - 94x^2 + 49$ в $\overline{\mathbb{Q}}_3$. Найдите степень инерции и индекс ветвления расширения $\mathbb{Q}_3(\alpha)$ над \mathbb{Q}_3 .

Задача 3.

Пусть p — простое число, n — натуральное. Докажите, что неразветвленное расширение \mathbb{Q}_p степени n существует и совпадает с $\mathbb{Q}_p(\zeta_{p^n-1})$.

Задача 4.

Пусть K — бесконечное поле, L/K — расширение Галуа степени $n, \sigma_1, \ldots, \sigma_n$ — все автоморфизмы L над K. Докажите, что существует $x \in L$ такой, что $\sigma_1 x, \ldots, \sigma_n x$ — базис L.

 $\mathit{Указаниe}$: Рассмотрите $\det(\sigma_i^{-1}\sigma_j x)$ и воспользуйтесь линейной независимостью характеров.

Задача 5.

- а) Пусть n натуральное число, $a \in \mathbb{Z}$ и p простое число такое, что $p \mid \Phi_n(a)$ и $p \nmid n$. Докажите, что $p \equiv 1 \pmod{n}$.
- б) Докажите, что для любого n существует бесконечно простых чисел вида kn+1.

Задача 6.

Пусть p — простое число вида 4k+3. Докажите, что существуют многочлены A(x), B(x) с целыми коэффициентами, для которых

$$\frac{x^p - 1}{x - 1} = A(x)^2 + A(x)B(x) + \frac{p + 1}{4}B(x)^2.$$

Задача 7.

- а) Пусть \mathcal{O} дедекиндово кольцо, $I \neq 0$ идеал \mathcal{O} . Докажите, что всякий идеал в \mathcal{O}/I главный.
- б) Докажите, что всякий идеал $\mathcal O$ порожден не более чем двумя элементами.