НМУ, Алгебра-2 Листок 9. 24.04.2023

Задача 1.

Докажите, что уравнение $x^p-x=t^{-1}$ не имеет решений в $\overline{\mathbb{F}}_p((t^{1/n}))$ ни для какого n.

Задача 2.

Пусть K — конечное расширение \mathbb{Q}_p . Докажите, что существует конечное расширение E поля \mathbb{Q} той же степени и такое, что E плотно в K.

Залача 3.

Докажите, что для p>2 группа корней из 1 поля \mathbb{Q}_p — циклическая порядка p-1. Что получится при p=2?

Задача 4.

Пусть $A\subset B$ — кольца и B конечно порождено как A-модуль, e_1,\ldots,e_n порождают B. Положим

$$\operatorname{disc}_A(B; e_1, \dots, e_n) = \operatorname{det}(\operatorname{Tr}_{B/A} e_i e_j).$$

- а) Пусть \mathcal{O}_K кольцо целых числового поля K. Докажите, что $D_K=\mathrm{disc}_{\mathbb{Z}}(\mathcal{O}_K)$ не зависит от выбора базиса в \mathcal{O}_K .
- б) Вычислите D_K для $K=\mathbb{Q}(\sqrt{D}),$ где $D\neq 1$ произвольное бесквадратное целое число.

Задача 5.

Пусть, как и ранее, K — конечное расширение $\mathbb{Q}, \mathcal{O}_K$ — его кольцо целых.

а) Докажите, что для любого $\mathbb{Z}-$ базиса e_1,\dots,e_n в \mathcal{O}_K и любого простого числа p выполнено сравнение

$$D_K \equiv \operatorname{disc}_{\mathbb{F}_p}(\mathcal{O}_K/(p); e_1 \mod p, \dots, e_n \mod p) \pmod{p}.$$

б) Простое число p называется разветвлённым в K, если существует простой идеал $\mathfrak{p} \subset \mathcal{O}_K$ такой, что $\mathfrak{p}^2 \mid (p)$. Докажите, что p разветвлено тогда и только тогда, когда $p \mid D_K$.

Задача 6.

Существует ли последовательность рациональных чисел $r_n \neq 0$ такая, что ряд

$$\sum_{n} r_n$$

сходится во всех \mathbb{Q}_p и в \mathbb{R} ?