Листок 2

Напомним, что интегральным подмногообразием интегрируемого распределения $T^c \subset TM^d$ называется многообразие N^c и гладкое погружение $f: N \to M$ такое, что $df(T_pN) = T(f(p))$ для любого $p \in N$; при этом f может не быть гомеоморфизмом.

1. Докажите, что теорема Фробениуса эквивалентна следующему утверждению:

Пусть $U \times V \subseteq \mathbb{R}^m \times \mathbb{R}^n$ с координатами $(x^1, \dots, x^m, y^1, \dots, y^n)$, и пусть дано гладкое отображение

$$b: U \times V \to Mat_{n \times m}(\mathbb{R}), \ b(x,y) = (b_{i\alpha}(x,y)), \ i = 1, \dots, n, \ \alpha = 1, \dots, m.$$

Предположим, что в $U \times V$ для всех $i = 1, \ldots, n, \ \alpha, \beta = 1, \ldots, m$ выполнены равенства

$$\frac{\partial b_{i\alpha}}{\partial x^{\beta}} - \frac{\partial b_{i\beta}}{\partial x^{\alpha}} + \sum_{j=1}^{n} \left(\frac{\partial b_{i\alpha}}{\partial y^{j}} b_{j\beta} - \frac{\partial b_{i\beta}}{\partial y^{j}} b_{j\alpha} \right) = 0.$$

Тогда в некоторой окрестности $U_0 \times V_0$ любой точки $(x_0, y_0) \in U \times V$ существует единственное гладкое отображение $a: U_0 \times V_0 \to V$ такое, что

$$a(x_0, y) = y, \ J_y(a(x, y)) = b(x, \alpha(x, y)),$$

еде J_y — матрица частных производных по координатам у («матрица Якоби в направлении y»).

- 2. Максимальным интегральным многообразием распределения T называется такое связное интегральное подмногообразие N распределения T, образ которого f(N) не лежит в качестве собственного подмножества ни в одном образе связного интегральном подмногообразии. Докажите, что через каждую точку $m \in M$ проходит единственное максимальное интегральное подмногообразие.
- 3. Пусть $\mathscr{F}_T \subset \Omega^*(M)$ идеал в алгебре дифференциальных форм на M, состоящий из форм, зануляющихся на векторах из T. Докажите, что распределение T интегрируемо, если и только если $d\mathscr{F}_T \subseteq \mathscr{F}_T$.
- 4. Пусть \mathbb{R}^1 вещественная прямая с обычной гладкой структурой, а $\hat{\mathbb{R}}^1$ вещественная прямая с гладкой структурой, заданной картой $x\mapsto x^3$. Докажите, что, хотя эти гладкие структуры разные, тем не менее \mathbb{R}^1 и $\hat{\mathbb{R}}^1$ диффеоморфны.
- 5. Каждое ли векторное поле на вещественной прямой полное?
- 6. Докажите, что
 - (a) Вектора $v_1, \ldots, v_l \in V^d$ линейно-независимы, если и только если $0 \neq v_1 \wedge \cdots \wedge v_l \in \Lambda^l V$;
 - (b) Докажите, что линейно-независимые наборы векторов v_1, \ldots, v_l и w_1, \ldots, w_l в V^d задают одно и то же подпространство, если и только если $v_1 \wedge \cdots \wedge v_l = cw_1 \wedge \cdots \wedge w_l$ для некоторого $c \neq 0$.

7. Пусть $\omega_1 \dots, \omega_k$ — линейно-независимые дифференциальные 1-формы на $M^d, \ d>k$. Пусть $\theta_1, \dots, \theta_k$ — такие 1-формы на M, что

$$\sum_{i=1}^{k} \theta_i \wedge \omega_i = 0.$$

Докажите, что существуют гладкие функции $A_{ij} = -A_{ji},\, i,j = 1,\dots, k$ на M такие, что

$$\theta_i = \sum_{j=1}^k |_{j=1}^k A_{ij} \omega_j, \ i = 1, \dots, k.$$

- 8. Напомним, что функцией Морса называется такая гладкая функция f на многообразии M, у которой все критические точки неособые (то есть такие, что матрицы частных производных f в этих точках невырождены) и все критические значения различны. Докажите, что на любом многообразии M существуют функции Морса. Более того, для любой функции $g: M \to \mathbb{R}$ и любого $\varepsilon > 0$ существует функция Морса $f: M \to \mathbb{R}$ такая, что $|f(x) g(x)| < \varepsilon$ для любого $x \in M$.
- 9. Найдите степень отображения f из сферы Римана в себя, если
 - (а) f задано многочленом n-й степени;
 - (b) f задано рациональной функцией $f = \frac{P}{Q}$, где P, Q многочлены степеней p и q соответственно.
- 10. Существует ли отображение степени 1
 - (a) $f: \mathbb{T}^2 \to S^2$?
 - (b) $f: S^2 \mapsto \mathbb{T}^2$?
- 11. Пусть M, N и W замкнутые ориентируемые n-мерные многообразия; пусть N, W связные, а $f: M \to N, g: N \to W$ гладкие отображения. Покажите, что $\deg(f \circ g) = \deg(f) \deg(g)$.
- 12. Пусть M, N- гладкие, замкнутые ориентированные многообразия размерности n, причем $M=\partial W^{n+1}$. Предположим, что отображение $f:M\to N$ продолжается до гладкого отображения $F:W\to N$. Докажите, что тогда $\deg(f)=0$.
- 13. Пусть S^{n-1} стандартная единичная сфера в \mathbb{R}^n , и $p:S^{n-1}\to S^{n-1}$ центральная симметрия. Покажите, что $\deg(p)=(-1)^n$.
- 14. Пусть ω дифференциальная n-форма с компактным носителем на \mathbb{R}^n , интеграл которой по \mathbb{R}^n равен 0. Доказать (не используя знания о когомологиях де Рама), что эта форма точная, более того она равна дифференциалу формы с компактным носителем.