НМУ, Алгебра-1 Листок 2

Начала теории групп.

Задача 1. а) Пусть $K \subset H$ подгруппа и $H \subset G$ подгруппа конечной группы G. Докажите, что

$$|G:K| = |G:H||H:K|$$

- **б)** Докажите, что если |G| = p, p простое, то $G \simeq \mathbb{Z}_p$.
- в) Пусть H, K подгруппы конченой группы G. Тогда $H \cap K$ подгруппа и $|K:H \cap K| \leq |G:H|$ и равенство достигается, если HK = G.
- г) Пусть H, K подгруппы конченой группы G и числа |G:H| и |G:K| взаимнопросты. Докажите, что G=HK.
- Задача 2. Докажите, что в конечной группе нечётного порядка у любого элемента существует единственный квадратный корень.
- **Задача 3.** Пусть H_1, H_2 подгруппы группы G. Докажите, что H_1H_2 подгруппа G тогда и только тогда когда $H_1H_2 = H_2H_1$. Приведите пример группы и двух подгрупп, произведение которых не является подгруппой.
- **Задача 4. а)** Докажите, что любой элемент $\sigma \in S_n$ представляется в виде произведения непересекающихся циклов единственным образом.
- **б)** Что происходит с циклом при сопряжении элементом $\sigma \in S_n$? Опишите классы сопряжённости в S_n и найдите их порядки.
- **Задача 5. а)** Верно ли, что нормальная подгруппа нормальной подгруппы нормальна в объемлющей группе?
- **б**) Подгруппа называется характеристической, если она инварианта относительно всех автоморфизмов группы. Покажите что, если H характеристическая подгруппа в N, а N нормальна в G, то H нормальна в G. Верно ли это утверждение, если поменять слова "характреистическая" и "нормальная" местами?
- в) Пусть G конечная группа и p минимальный простой делитель |G|. Пусть |G:H|=p. Докажите, что H нормальная подгруппа G.
- г) Пусть в некоторой группе все подгруппы нормальны. Верно ли, что группа абелева?
- **Задача 6. а)** Пусть G конечная группа и p простое. Тогда $|G|=p^k$ для некоторого k тогда и только тогда когда порядки всех элементов G это степени p.
- б) Если все элементы G (кроме e) имеют одинаковый порядок, то этот порядок равен p, а $|G|=p^k$.
- **в)** Используя предыдущий пункт докажите, что порядок конечного поля равен степени простого числа.
- **Задача 7. а)** Пусть H любая, а N нормальная подгруппы некой группы. Покажите, что $H \cap N \triangleleft H$, HN = NH подгруппа, $N \triangleleft HN$ и $HN/N \simeq N/H \cap N$.
- **б)** Пусть G группа, $K \subset G$ нормальная подгруппа, и N подгруппа K, нормальная в G. Тогда $K/N \unlhd G/N$ и $(G/N)/(K/N) \simeq G/K$.

Задача 8. а) Докажите, что $PGL_n(\mathbb{C}) \simeq PSL_n(\mathbb{C})$.

- **б)** Докажите, что $PGL_n(\mathbb{k}) \simeq PSL_n(\mathbb{k})$ тогда и только тогда, когда у каждого элемента \mathbb{k} существует корень n-ой степени из 1 в \mathbb{k} .
- в) Докажите, что $PGL_n(\mathbb{R}) \simeq PSL_n(\mathbb{R}) \simeq SL_n(\mathbb{R})$ для нечётного n. Докажите, что $PSL_n(\mathbb{R})$ подгруппа индекса 2 в $PGL_n(\mathbb{R})$ для чётного n.

Задача 9. а) Докажите, что $Aut(Q_8) = S_4$.

- **б)** Докажите, что если $f \in Aut(S_n)$ и f переводит транспозиции в транспозиции, то f внутренний автоморфизм.
- **в)** Докажите, что $Aut(S_n) = S_n, n \neq 2, 6$.
- Γ) Верно ли, что $Aut(G_1 \times G_2) \simeq Aut(G_1) \times Aut(G_2)$?
- д) Пусть G_1, G_2 конечные группы взаимнопростых порядков. Докажите, что $Aut(G_1 \times G_2) \simeq Aut(G_1) \times Aut(G_2)$.

НМУ, Алгебра-1 Листок 2

Задача 10. Проективной прямой \mathbb{kP}^1 над полем \mathbb{k} будем называть множество прямых в двумерном пространстве \mathbb{k}^2 . Биективное отображение $\mathbb{P}^1 \to \mathbb{P}^1$ будем называть проективным преобразованием, если оно индуцированно линейным преобразованием \mathbb{k}^2 .

- а) Докажите, что проективные преобразования образуют группу изоморфную $PGL_2(\Bbbk)$.
- **б)** Отождествите \mathbb{kP}^1 с множеством $\mathbb{k} \cup \{\infty\}$. Докажите, что при этом отождествлении группа проективных преобразований отождествляется с дробно-линейными биективными отображениями

$$\mathbb{k} \cup \{\infty\} \to \mathbb{k} \cup \{\infty\}, x \mapsto \frac{ax+b}{cx+d}, a, b, c, d \in \mathbb{k}, ad-bc \neq 0$$

- в) Пусть p простое число. Структурой проективной прямой на множестве $\{0, 1, \dots, p-1, \infty\}$ будем называть биекцию $\mathbb{RP}^1 \to \{0, 1, \dots, p-1, \infty\}$. Будем говорить, что структуры f, g эквивалентны, если $f \circ g^{-1}$ проективное преобразование. Докажите, что число классов эквивалентности равно p+1.
- г) Пусть $f: S_6 \to S_6$ отображение, переводящее перестановку $\{0, \dots, 4, \infty\}$ в перестановку шести структур проективной прямой на этом множестве (структуры как-то занумерованны). Найдите $f((01)(23)(4\infty))$.
- д) Докажите, что f внешний автомрфизм группы S_6 .
- **е***) Докажите, что $Aut(S_6) \simeq S_6 \rtimes \mathbb{Z}_2$.

Задача 11. а) Докажите, что A_n порождается циклами длины 3.

б) Задайте A_n образующими и соотношениями.

Задача 12. а) Задайте группу $SL_2(\mathbb{Z})$ образующими и соотношениями.

- **б)** Докажите, что $[SL_2(\mathbb{Z}), SL_2(\mathbb{Z})]$ является собственной подгруппой $SL_2(\mathbb{Z})$.
- в) Найдите $|SL_2(\mathbb{Z}): [SL_2(\mathbb{Z}), SL_2(\mathbb{Z})]|$.

Задача 13. Пусть G – конечнопредставленная группа, причём число соотношений меньше чем число образующих. Докажите, что G – бесконечна.