НМУ, Алгебра-2 Листок 7

Евклидово пространство, сопряжённые операторы.

Задача 1. Пусть V – векторное пространство над $\mathbb R$ и $\dim V=n$. Докажите, что если C:V o V— линейное преобразование и объём параллелепипеда, натянутого на вектора v_1, \ldots, v_n равен V, то объём параллелепипеда, натянутого на вектора Cv_1, \ldots, Cv_n равен $|\det C| \cdot V$.

- **Задача 2. а)** Рассмотрим группу $O_n(\mathbb{R})$ как топологическое пространство в индуцированной с $M_n(\mathbb{R})$ топологии. Докажите, что группа $O_n(\mathbb{R})$ содержит ровно две компоненты (линейной) связности. $\mathbf{6}^*$) Докажите, что группы $O_{p,q}(\mathbb{R})$ содержит четыре компоненты (линейной) связности.
- **Задача 3. а)** Докажите, что для любая матрица из $GL_n(\mathbb{R})$ может быть единственным образом представлена в виде произведения A = OU, где $O \in O_n(\mathbb{R})$, а U- верхнетреугольная матрица с положительными числами на диагонали.
- **6***) Обозначим через $GL_n^+(\mathbb{R})$ подгруппу матриц с положительным определителем. Докажите, что $\pi_1(GL_n^+(\mathbb{R})) \simeq \mathbb{Z}/2\mathbb{Z}$ для $n \geq 3$, $\pi_1(GL_2^+(\mathbb{R})) \simeq \mathbb{Z}$.
- в) Докажите, что для любая матрица из $GL_n(\mathbb{R})$ может быть единственным образом представлена в виде произведения A = SO, где S –положительно определённый симметрический оператор, а O – ортогональный.

Задача 4. Рассмотрим билинейные формы на пространстве $\mathbb{R}[x]$.

- a) $\int_{-1}^{1} \frac{f(x)g(x)dx}{\sqrt{1-x^2}};$
- 6) $\int_0^\infty f(x)g(x)e^{-x}dx;$ B) $\int_{-\infty}^\infty f(x)g(x)e^{-x^2}dx;$ r) $\int_{-1}^1 f(x)g(x)dx.$

Докажите, что эти формы являются евклидовым скалярным произведением и ортогонализуйте стандартный базис $\{x^n\}$ по отношению к этим скалярным произведениям.

Указание. Многочлены Лагера $L_n(x) = e^x \frac{d^n}{dx^n} (e^{-x}x^n)$; Многочлены Эрмита $E_n(x) = e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$; Многочлены Лежандра $P_n(x) = \frac{d^n}{dx^n} (1-x^2)^n$; Многочлены Чебышева $T_n(x) = \cos(n \arccos x)$.

- д) Найдите сопряженные операторы к операторам x, $\frac{\partial}{\partial x}$, $x\frac{\partial}{\partial x}$ относительно форм в) и г).
- **Задача 5.** Пусть $A:V\to V$ кососимметрический линейный оператор. Покажите, что оператор $\exp(A)$ ортогональный.
- **Задача 6.** Докажите, что в псевдоевклидовом пространстве верно, что $(x, x)(y, y) \le (x, y)^2$ и равенство достигается только в случае пропорциональности векторов.
- Задача 7. a) Докажите, что две для двух квадратичных форм над \mathbb{R} , одна из которых положительно определена, существует базис в котором обе формы имеют канонический вид. б) Докажите, что если формы произвольные, то такого базиса, вообще говоря, не существует.
- Задача 8. Докажите, что для матрицы самосопряженного линейного оператора в произвольном базисе верно $A^T\Gamma = \Gamma A$, где Γ – матрица Γ рама соответствующей положительно определённой билинейной формы.