НМУ, Алгебра-1 Листок 9

Комплексификация и овеществление.

Задача 1. [Условия Коши-Римана.] Запишите критерий голоморфности функции $f: \mathbb{C}^n \to \mathbb{C}$ в терминах её вещественной и мнимой части.

Задача 2. Найдите коразмерность подпространства $\operatorname{End}_{\mathbb{C}}(W)$ в пространстве $\operatorname{End}_{\mathbb{R}}(W_{\mathbb{R}})$.

Задача 3. Пусть F - линейный оператор на W. Обозначим через $F_{\mathbb{C}}:(W_{\mathbb{R}})_{\mathbb{C}}\to (W_{\mathbb{R}})_{\mathbb{C}}$ комплексификацию вещественно линейного оператора $F_{\mathbb{R}}:W_{\mathbb{R}}\to W_{\mathbb{R}}$ на овеществлённом пространстве $W_{\mathbb{R}}$. Выясните, как связаны друг с другом характеристические многочлены, собственные числа и собственные векторы операторов F и $F_{\mathbb{C}}$

- а) в случае когда $W = \mathbb{C}$ и $F(z) = i \cdot z$;
- **б)** для произвольного F.

Задача 4. Докажите, что если $x = ai + bj + ck, y = di + ej + fk \in \mathbb{H}$ – чисто мнимые кватернионы и $\vec{u} = (a, b, c), \vec{v} = (d, e, f),$ то $xy = (\vec{u}, \vec{v}) + \vec{u} \times \vec{v}.$

Задача 5. Покажите, что центр тела кватернионов совпадает с пространством чисто вещественных кватернионов:

$$Z(\mathbb{H}) := \{ t \in \mathbb{H} | qt = tq \, \forall \, q \in \mathbb{H} \} \simeq \mathbb{R} \cdot e.$$

Задача 6. а) Опишите решения уравнения $x^2 = -1$ в кватернионах.

б) Пусть q это корень уравнения из предыдущего пункта. Докажите, что множество кватернионов вида $a+q\cdot b; a,b\in\mathbb{R}$ образуют в \mathbb{H} подполе, изоморфное \mathbb{C} .

Задача 7. Рассмотрим отображение

$$SU_2 \to SO_3(\mathbb{R}), x \to xqx^{-1},$$

где q — чисто мнимый кватернион, x — кватернион по норме равный единице. Запишите явно матрицу в базисе из матриц Паули образ $x \in SU_2$.

Задача 8. Докажите, что $\pi_1(SO_3(\mathbb{R})) = \mathbb{Z}/2\mathbb{Z}$.

Задача 9*. а) Укажите в $M_2(\mathbb{C})$ базис, в котором форма det имеет диагональную матрицу Грама с элементами (1,-1,-1,-1) на диагонали.

б) Докажите, что отображение

$$\psi: SL_2(\mathbb{C}) \times SL_2(\mathbb{C}) \to SO_4(\mathbb{C}), (x,y) \mapsto (A \mapsto xAy^{-1})$$

является сюръективным гомомофризмом групп.

в) Вычислите явно $\psi(x,y)$ в базисе из пункта а).

 $^{^{1}}$ над полем \mathbb{R}