На главную страницу НМУ
В.Б.Шехтман, Д.И.Савельев
Основы теории множеств
Программа курса
-  Axioms of set theory in different versions: ZF,  NBG, TT. 
 -  The simplest set-theoretic notions (relation, function, product etc.)
 -  Natural numbers. Finite and infinite sets. Countable sets.  
 -  Well-orderings. Ordinals and their properties. Transfinite induction.
 -  Cardinalities. Cantor- Bernstein theorem. Cantor theorem.
 -  Axiom of Choice and Zermelo theorem. Zorn's lemma. Filters and ultrafilters.
 -  Cardinals. Cardinal arithmetic.
 -  Cofinality. Regular and singular cardinals.
 -  Generalized continuum hypothesis. Sierpinsky theorem.
 -  Inaccessible cardinals. Measurable cardinals.
 -  Games and strategies. The axiom of Determinateness.
 
Bibliography
-  C. Kuratowski, A. Mostowski. Set theory. Amsterdam, 1968.
 -  A. Levy. Basic set theory. Springer, 1979.
 -  M. Zuckerman. Sets and transfinite numbers. Macmillan, 1974.
 -  D. van Dalen, 
H.C. Doets, H. de Swart. Sets: naive, axiomatic and applied. 
Pergamon Press, 1978.