На главную страницу НМУ
В.Б.Шехтман, Д.И.Савельев
Основы теории множеств
Программа курса
- Axioms of set theory in different versions: ZF, NBG, TT.
- The simplest set-theoretic notions (relation, function, product etc.)
- Natural numbers. Finite and infinite sets. Countable sets.
- Well-orderings. Ordinals and their properties. Transfinite induction.
- Cardinalities. Cantor- Bernstein theorem. Cantor theorem.
- Axiom of Choice and Zermelo theorem. Zorn's lemma. Filters and ultrafilters.
- Cardinals. Cardinal arithmetic.
- Cofinality. Regular and singular cardinals.
- Generalized continuum hypothesis. Sierpinsky theorem.
- Inaccessible cardinals. Measurable cardinals.
- Games and strategies. The axiom of Determinateness.
Bibliography
- C. Kuratowski, A. Mostowski. Set theory. Amsterdam, 1968.
- A. Levy. Basic set theory. Springer, 1979.
- M. Zuckerman. Sets and transfinite numbers. Macmillan, 1974.
- D. van Dalen,
H.C. Doets, H. de Swart. Sets: naive, axiomatic and applied.
Pergamon Press, 1978.