На главную страницу НМУ
Миша Вербицкий
Основы комплексной алгебраической геометрии
Алгебраическая геометрия может быть постигнута
двумя независимыми способами. Вы можете вывести
все основные результаты из коммутативной алгебры,
как это делали классики-итальянцы; это подход
элементарный, но неинтуитивный и требующий трудоемких
вычислений. Вместо этого (по предложению Уильяма
Ходжа) можно выводить результаты алгебраической
геометрии из топологии и дифференциальной геометрии:
теории гармонических форм (известной как "теория
Ходжа"), комплексного анализа и алгебраической
топологии. Получается много проще и интиутивнее,
при условии, что студент в состоянии освоить
тяжелую математику, которая служит фундаментом
для теории Ходжа. Другое ограничение теории Ходжа -
большинство аргументов работает только в
характеристике 0, и для желающих работать
в характеристике p приходится придумывать
отдельные методы доказательства ключевых
теорем (точнее, тех из них, которые верны).
В курсе "основы комплексной алгебраической геометрии"
я расскажу теорию Ходжа и ту часть комплексной алгебраической
геометрии, которая из нее выводится; науки, которые
основаны на комплексном анализе и на коммутативной
алгебре, я рассказывать не буду.
Программа курса
- Гильбертовы пространства, компактные операторы,
спектральная теорема для компактных самосопряженных операторов.
- Символ оператора, эллиптические операторы, фредгольмовы
операторы. Теорема Атьи-Зингера (без доказательства).
- Анализ Фурье на торе: соболевские нормы,
лемма Реллиха, лемма Соболева.
- Фредгольмовость для оператора Лапласа.
Диагонализация оператора Лапласа. Эллиптическая
регулярность для уравнения Лапласа.
- Представимость когомологий де Рама гармоническими формами.
Применения: когомологии компактных групп Ли, комплексных
проективных пространств, грассманианов.
- Комплексные структуры и разложение Ходжа на дифференциальных формах.
- Почти комплексные многообфразия, комплексные
могообразия, теорема Ньюлендера-Ниренберга, ее доказательство
для вещественно-аналитических многообразий.
- Эрмитовы метрики, кэлеровы многообразия,
примеры и основные свойства кэлеровых многообразий.
Форма Фубини-Штуди. Кэлеровость проективных пространств
и грассманианов.
- Параллельность тензора комплексной структуры на
кэлеровом многообразии.
- Алгебра суперсимметрий кэлерова многообразия.
Тождества Кэлера и разложение Ходжа на когомологиях.
Теорема Лефшеца, sl(2)-тройки, разложение Лефшеца
на когомологиях.
- Потоки и обобщенные функции. Пушфорвард потока.
Интегральные ядра. Ядро Коши.
- Лемма Пуанкаре-Дольбо-Гротендика. Когомологии
Дольбо. Геометрическая интерпретация разложения Ходжа.
Теорема Хартогса.
- Голоморфные дифференциальные формы и их свойства.
Бирациональные отображения. Раздутие. Инвариантность голоморфных
дифференциальных форм относительно бирациональных отображений.
Каноническое расслоение и его обратный образ при раздутии.
- Голоморфные расслоения. Связность Черна, ее существование
и единственность, ее кривизна. Линейные расслоения, экспоненциальная
точная последовательность, первый класс Черна.
- Алгебра суперсимметрий кэлерова многообразия, ее
действие на дифференциальных формах с коэффициентами в
расслоении. Тождества Кодаиры-Накано. Теорема Кодаиры-Накано
о занулении когомологий.
- Глобально-порожденные, обильные и очень обильные
расслоения. Проективное вложение. Кэлеровость раздутия.
Применение зануления когомологий к обильности расслоений.
Теорема Кодаиры о проективности кэлеровых многообразий.
Алгебраическая размерность многообразий. Мойшезоновы,
комплексные неалгебраические и некэлеровы многообразия.
- (*) Абелевы многообразия и комплексные торы. Отображение
Альбанезе и его свойства. Кривая и ее якобиан. Гиперэллиптические
кривые. Комплексные кривые и их плоские развертки.
Явная конструкция голоморфных дифференциалов на
комплексной кривой.
- (*) Линеаризуемые автоморфизмы. Структурная теорема для
группы комплексных автоморфизмов проективного многообразия.
- (*) Теорема Калаби-Яу, многообразия Калаби-Яу, классификация
голономий.
Темы, обозначенные (*), будут изучены, если хватит времени.
От студентов потребуется понимание анализа
(ряд Тэйлора, дифференциальные формы, дифференциал де Рама,
лемма Пуанкаре, теорема Стокса, ряды Фурье, многообразия),
комплексного анализа в размерности 1, и дифференциальной геометрии
(векторные расслоения и связности, тензоры, римановы метрики,
связность Леви-Чивита, потоки диффеоморфизмов, группы Ли,
теорема Фробениуса). Также нужно знать, что такое пучки,
резольвенты, когомологии пучков. Основные определения я
дам, но времени на освоение этих наук будет очень мало
(впрочем, если большинство слушателей не знает какой-то
базовой науки, ее придется изучать в подробности).
Курс читается дважды в неделю, в субботу вечером и в среду
вечером, на матфаке ВШЭ. После лекций происходит прием задач.
Первое занятие - 24 января. К курсу выдаются листочки, очень много.
Я настоятельно советую изучать и по возможности сдавать эти листочки:
шансов успешно сдать экзамены, не сдавая листочки, у большинства
студентов не будет.
Впрочем, я не планирую рассказывать ничего,
выходящего за пределы первого тома "Основ алгебраической
геометрии" Гриффитса-Харриса, и слушатель, который
хорошо освоил Гриффитса-Харриса (и умеет решать нетрудные
задачи по нему) легко сдаст и мой курс.
Литература:
-
Lectures on Kahler geometru, Andrei Moroianu
http://www.math.polytechnique.fr/~moroianu/tex/kg.pdf
-
Complex analytic and differential geometry, J.-P. Demailly
http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
-
Lectures on Kahler manifolds, W. Ballmann
http://people.mpim-bonn.mpg.de/hwbllmnn/notes.html
-
C. Voisin, ``Hodge theory''.
-
D. Huybrechts, ``Complex Geometry - An Introduction''
-
A. Besse, ``Einstein manifolds''.