Кусочно-линейные многообразия и маломерная топология

Задачи к лекции 5:

PL-аппроксимации

9 октября 2025

Ниже все триангуляции по умолчанию считаются линейными.

Задача 1. Пусть невырожденный выпуклый полиэдр $P \subset \mathbb{R}^n$ является пересечением набора полупространств $H_1, \ldots, H_k \subset \mathbb{R}^n$. Докажите, что существует единственный минимальный по включению поднабор $H_{i_1}, \ldots, H_{i_{k'}}$, чьё пересечение совпадает с P, и при этом каждая (n-1)-мерная грань P есть пересечение $P \cap \partial H_{i_i}$ для некоторого $j=1,\ldots,k'$.

Задача 2. Пусть для невырожденного выпуклого полиэдра $P \subset \mathbb{R}^n$ заданы триангуляции граней, причём они не имеют новых вершин (отличных от 0-мерных граней самого P). Обязательно ли эта триангуляция ∂P продолжается до триангуляции всего P?

Задача 3. Пусть задана триангуляция открытого множества $U \subset \mathbb{R}^n$ с множеством вершин V.

- а) Докажите, что для любой вершины $v_0 \in V$ существует $\varepsilon > 0$, такое что если сдвинуть v_0 на расстояние, не превышающее ε , то снова получится линейная триангуляция U.
- **б**) Докажите, что существует непрерывная функция $\varepsilon:U\to\mathbb{R}_{>0}$, такая что если сдвинуть каждую вершину $v\in V$ на расстояние, не превышающее $\varepsilon(v)$, то снова получится линейная триангуляция U.

Задача 4. Дана триангуляция K подмножества $X \subset \mathbb{R}^n$.

- а) Предположим, X компактен. Докажите, что для любого $\varepsilon > 0$ существует k, такое что в k-кратном барицентрическом подразбиении K диаметр любого симплекса меньше ε .
- **б)** Докажите, что для любой непрерывной функции $\varepsilon: X \to \mathbb{R}_{>0}$ существует ε -малое измельчение K (т. е. диаметр каждого симплекса меньше всех значений функции на нём).

1