Введение в математику - семинар 1

10 сентября 2025

- (1) Докажите, что следующие формулы являются тавтологией:
 - (a) $(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$;
 - (b) $(X \land (X \Rightarrow Y)) \Rightarrow Y$.
- (2) Выразите конъюнкцию через дизъюнкцию и отрицание.
- (3) Выражается ли импликация через конъюнкцию и дизъюнкцию?
- (4) Отношение \sim на множестве X называется
 - рефлексивным, если $x \sim x$ для всех $x \in X$;
 - **симметричным**, если из $x \sim y$ следует $y \sim x$;
 - ullet антисимметричным, если из $x \sim y$ и $y \sim x$ следует x = y;
 - транзитивным, если из $x \sim y$ и $y \sim z$ следует $x \sim z$.

Для каждого из перечисленных выше свойств приведите пример отношения, удовлетворяющего ему и не удовлетворяющего остальным.

- (5) Какие из свойств выполнены для следующих отношений:
 - (a) $x \sim y$ для любых $x, y \in X$;
 - (b) $x \sim y$ ни для одной пары $x, y \in X$;
- (6) Пусть на множестве X задан частичный порядок. Является ли отношение «a сравнимо с b» отношением эквивалентности на X?
- (7) Проверьте, что лексикографический порядок на множестве $2^{\mathbb{N}}$ бесконечных последовательностей из нулей и единиц действительно является отношением линейного порядка. Найдите все такие пары $x,y\in 2^{\mathbb{N}}$, что x< y и не существует $z\in 2^{\mathbb{N}}$, для которого x< z< y.
- (8) Пусть на множестве X задано отношение линейного порядка. Для подмножества $A \subset X$ дайте определение точной верхней грани $\sup A$ и точной нижней грани $\inf A$. Всегда ли они существуют?
- (9) Для подмножества $A \subset X$ обозначим через A_s множество его верхних граней, а через A_i множество его нижних граней. Докажите, что $\inf A_s = \sup A$ и $\sup A_i = \inf A$ (в частности, если объект из правой части равенства существует, то существует и объект из левой части равенства, и наоборот).
- (10) Является ли множество $\{\{1\}\}$ подмножеством множества $\{\{1,2\}\}$. Объясните ответ.
- (11) Докажите, что $(A \cap B) \setminus C = (A \setminus C) \cap B$ для любых множеств A, B, C.
- (12) Может ли такое быть, что $A\subset B$ и одновременно $A\in B$? Приведите пример или докажите невозможность.