Введение в математику - семинар 2

17 сентября 2025

- (1) Дано отображение $f: X \to Y$ и подмножества $A, B \subset X$ и $C, D \subset Y$. Верно ли, что
 - (a) если $A \cap B = \emptyset$, то $f(A) \cap f(B) = \emptyset$;
 - (b) если $f(A) \subset f(B)$, то $A \subset B$;
 - (c) если $C \cap D = \emptyset$, то $f^{-1}(C) \cap f^{-1}(D) = \emptyset$;
 - (d) если $f^{-1}(C) \subset f^{-1}(D)$, то $C \subset D$?
- (2) Пусть $f: X \to Y, g: Y \to Z$ отображения.
 - (a) Предположим, f и $g \circ f$ инъективны. Обязательно ли g инъективно?
 - (b) Предположим, g и $g \circ f$ инъективны. Обязательно ли f инъективно?
 - (c) Предположим, f и $g \circ f$ сюръективны. Всегда ли g сюръективно?
 - (d) Пусть g и $g \circ f$ сюръективны. Обязательно ли f сюръективно?
- (3) Постройте биекцию между [0; 4] и $[0; 4] \cup \mathbb{N}$.
- (4) Докажите, что отрезок [1; 2] равномощен полуинтервалу [0; 5).
- (5) Докажите, что интервал [0,1) равномощен лучу $[0,+\infty)$.
- (6) Докажите, что объединение счётного числа не более чем счётных множеств $X_1 \cup X_2 \cup X_3 \cup \ldots$ также не более чем счётно. (Обратите внимание, что некоторые из этих множеств могут пересекаться.)
- (7) Дан связный граф с не более чем счётным множеством вершин, причём степень каждой его вершины равна 1 или 2. Опишите все такие графы с точностью до изоморфизма.
- (8) Предположим, существуют инъекция $f_1: X \to Y$ и сюръекция $f_2: X \to Y$. Обязательно ли существует биекция $X \to Y$?
- (9) Счётно ли множество биекций $f: \mathbb{N} \to \mathbb{N}$ (перестановок натурального ряда)? А если потребовать, чтобы f было тождественным вне некоторого конечного множества? А таких, что |f(n) n| < 100?
- (10) Пусть S имеет мощность континуум. Докажите, что
 - (a) $|S \times S| = |S|$;
 - (b) $|2^S \times 2^S| = |2^S|$.
- (11) Можно ли на прямой расположить несчётное количество непересекающихся интервалов?
- (12) Докажите, что любое непустое открытое подмножество \mathbb{R}^n имеет мощность континуум.
- (13) На бесконечном множестве X задано отношение эквивалентности \sim , про которое известно, что каждый класс эквивалентности конечен. Покажите, что фактормножество X/\sim равномощно X.

1