Введение в математику - семинар 4

1 октября 2025

- (1) Найдите:
 - (a) i^{2025} :

 - (a) t, (b) $(1+i)^{2025}$; (c) $\frac{(1+i)^{20}}{(1-i)^{25}}$; (d) $(1+\sqrt{3}i)^{16}$;

 - (e) $\left(\frac{\sqrt{3}+i}{1-i}\right)^{30}$.
- (2) Докажите равенство $\cos(2\alpha) + i\sin(2\alpha) = \frac{1 + i \operatorname{tg}(\alpha)}{1 i \operatorname{tg}(\alpha)}$.
- (3) Решите уравнения:
 - (a) $z^n = 1$, для всех $n \geqslant 2$.

 - (a) z = 1, для всех $n \ge 2$. (b) $z^4 4z^3 + 6z^2 4z + 17 = 0$; (c) $x^4 + x^3 + x^2 + x + 1 = 0$; (d) $\left(\frac{1+ix}{1-ix}\right)^4 = i$.
- (4) Среди комплексных чисел z, удовлетворяющих условию $|z-25i| \le 15$, найдите число с наименьшим аргументом.
- (5) Движения плоскости:
 - (а) Какое преобразование плоскости задаёт следующее отображение:

$$z \mapsto \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(z - 5 - 4i) + 5 + 4i.$$

- (b) Задайте в комплексных координатах поворот на угол α относительно точки (x_0, y_0) .
- (с) Докажите, что композиция поворотов плоскости есть либо поворот, либо параллельный перенос.
- (6) Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде $Bz - \bar{B}\bar{z} + C = 0$, где C - чисто мнимое число.
- (7) Гомотетии:
 - (a) Какое преобразование плоскости задаёт отображение $z \mapsto 8(z-5-4i)+5+4i$?
 - (b) Задайте в комплексных координатах гомотетию с центром в точке (x_0, y_0) и коэффициентом c.
 - (с) Докажите, что композиция гомотетий плоскости есть либо гомотетия, либо параллельный перенос.
- (8) Пусть многочлен с действительными коэффициентами f(x) имеет корень a+ib. Докажите, что число a - ib также будет корнем f(x).
- (9) Пусть $1, z_2, \dots, z_n$ корни уравнения $z^n = 1$. Докажите, что $(1 z_2) \dots (1 z_n) = n$.

- (10) Для любых $x_1, \dots, x_n \in \mathbb{R}$ докажите, что $\sum \cos(x_i x_j) \ge 0$ (в сумме все n^2 слагаемых). (11) Докажите, что отображение $\mathbb{C} \to \mathrm{Mat}_{2 \times 2}(\mathbb{R})$, заданное формулой

$$a + bi \mapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

является гомоморфизмом \mathbb{R} -алгебр (т. е. сохраняет суммы, произведения и умножение на числа).

- (12) Найдите сумму: (a) $C_n^0 C_n^2 + C_n^4 C_n^6 + \dots;$ (b) $C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \dots$