Введение в математику - семинар 5

8 октября 2025

- (1) Найдите 2023-25 степени и знак перестановок:

 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$; (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 1 & 2 & 9 & 8 & 6 & 7 & 3 & 5 & 10 \end{pmatrix}$.
- (2) Посчитайте:
 - $\text{(a)} \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 4 & 3 \end{pmatrix};$
 - (b) $(1,2,3,5) \circ (3,4)$;
 - (c) $(1,2,5,6)^{-1}$.
- (3) Какие цикловые типы перестановок возможны в группе \mathfrak{S}_4 ? Сколько перестановок каждого типа? Чему равен порядок перестановок каждого типа?
- (4) Сколько перестановок из \mathfrak{S}_{10} имеют тип
 - (a) $1, \ldots, 1, 2;$
 - (b) 2, 2, 2, 2, 2;
 - (c) 1, 2, 3, 4?
- (5) Что можно сказать о чётности порядка произвольной нечётной перестановки?
- (6) Определите число инверсных пар и чётность следующих перестановок $f \in \mathfrak{S}_n$
 - (a) (1, 2, 3, 4, 5);
 - (b) (1,3,5)(2,4);
 - (c) $f(i) = i + 2 \pmod{n}$;
 - (d) f(i) = n + 1 i.
- (7) Существует и в \mathfrak{S}_{12} элемент порядка 42?
- (8) Пронумеруем вершины куба числами от 1 до 8, пусть f поворот куба. Какой цикловой тип может иметь соответствующая перестановка из \mathfrak{S}_8 ? То же для несобственного движения, переводящего куб в себя.
- (9) Пусть q переестановка из \mathfrak{S}_n . Докажите, что $g \circ (1, 2, ..., k) \circ q^{-1} = (g(1), g(2), ..., g(k))$.
- (10) Докажите, что \mathfrak{S}_n порождается
 - (a) транспозициями $(1,2),(1,3),\ldots,(1,n)$;
 - (b) транспозициями $(1,2),(2,3),\ldots,(n-1,n)$.
- (11) Покажите, что минимальное количество множителей в разложении на транспозиции вида (i, i + 1) равно количеству инверсных пар в перестановке.
- (12) Докажите, что цикл длины l не представим в виде произведения менее чем l-1 транспозиции.

1

(13) Покажите, что A_n порождается

- (а) циклами длины 3 и парами независимых транспозиций;
- (b) только циклами длины 3.
- (14) Докажите, что при n > 2 любой цикл длины 3 является коммутатором двух перестановок из \mathfrak{S}_n . Выведите, что $A_n = [\mathfrak{S}_n, \mathfrak{S}_n]$.
- (15) Покажите, что
 - (a) $[A_3, A_3] \neq A_3$;
 - (b) $[A_4, A_4] \neq A_4$.
- (16) Зафиксируем множество X и пусть S набор биекций $X \to X$, такой что если $f, g \in S$, то $f \circ g \in S$ и $f^{-1} \in S$. Докажите, что S является группой. Докажите, что любая конечная группа является подгруппой \mathfrak{S}_n при некотором n.