Введение в математику - семинар 6

15 октября 2025

- (1) Группа симметрий правильного n-угольника называется **группой диэдра** и обозначается D_n .
 - (a) Покажите, что группа D_n порождается поворотом r на $\frac{2\pi}{n}$ и симметрией s относительно прямой.
 - (b) Докажите, что $|D_n| = 2n$.
 - (c) Опишите все подгруппы D_n . Какие из них нормальны?
- (2) Всякая ли конечная группа, порождённая двумя различными нетождественными инволюциями, изоморфна группе диэдра?
- (3) Постройте изоморфизм собственной группы куба с \mathfrak{S}_4 .
- (4) Найдите порядки собственной и несобственной групп
 - (a) пяти платоновых тел в \mathbb{R}^3 ;
 - (b) четырёхмерного куба;
 - (c) четырёхмерного мерного симплекса (выпуклой оболочки концов векторов $e_1, e_2, e_3, e_4, e_5,$ которые образуют стандертный базис в \mathbb{R}^5).
- (5) Сколько элементов \mathfrak{S}_6 неподвижны при сопряжении перестановкой σ , где:
 - (a) $\sigma = (1, 4, 6)(2, 5);$
 - (b) $\sigma = (1,4)(2,5)(3,6)$.
- (6) Докажите, что \mathfrak{S}_n порождается
 - (a) всеми транспозициями $(i, j) \in \mathfrak{S}_n$;
 - (b) транспозициями $(1,2),(1,3),\ldots,(1,n)$;
 - (c) транспозициями $(1,2),(2,3),\ldots,(n-1,n)$.
- (7) Покажите, что минимальное количество множителей в разложении на транспозиции вида (i, i + 1) равно количеству инверсных пар в перестановке.
- (8) Докажите, что цикл длины l не представим в виде произведения менее чем l-1 транспозиции.
- (9) Покажите, что A_n порождается
 - (а) циклами длины 3 и парами независимых транспозиций;
 - (b) только циклами длины 3.
- (10) Докажите, что при n > 2 любой цикл длины 3 является коммутатором двух перестановок из \mathfrak{S}_n . Выведите, что $A_n = [\mathfrak{S}_n, \mathfrak{S}_n]$.
- (11) Покажите, что
 - (a) $[A_3, A_3] \neq A_3$;
 - (b) $[A_4, A_4] \neq A_4$.
- (12) Зафиксируем множество X и пусть S набор биекций $X \to X$, такой что если $f, g \in S$, то $f \circ g \in S$ и $f^{-1} \in S$. Докажите, что S является группой. Докажите, что любая конечная группа является подгруппой \mathfrak{S}_n при некотором n.
- (13) Пусть f и g элементы группы G. Чему может быть равен $\operatorname{ord}(fg)$, если $\operatorname{ord}(gf) = n$?

- (14) Все ли элементы нечётного порядка являются квадратами?
- (15) Во всякой ли группе чётного порядка есть элемент порядка два?
- (16) Покажите, что группа, все элементы которой имеют порядок два, абелева.
- (17) Покажите, что любая подгруппа индекса два нормальна.
- (18) Пусть две нормальные подгруппы пересекаются по единице. Покажите, что их элементы коммутируют друг с другом.