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Mbotivations in turbulence

In fluid dynamics, turbulence is a flow regime in which the velocity field presents unsteady vortices
on many scales.

Turbulent flows are thus
characterized by a highly
irregular aspect, an unpre-
dictable behaviour and the
existence of many time or
space scales. Such flows
arise when the source of
kinetic energy making the
fluid move is much greater
than viscosity forces of the
fluid. Inversely, the fluid is Figure 1: Vortices in a stream
said to be laminar when it
is smooth.

(a) Steam and smould (b) Wake turbulence

Figure 2: Examples of turbulence

There are many examples of turbulent flows: the mixing of warm and cold air in the atmosphere
by wind which causes clear-air turbulence experienced during airplane flight as well as poor as-
tronomical seeing, most of the terrestrial atmospheric circulation, the oceanic and atmospheric
mixed layers and intense oceanic currents, the flow conditions in many industrial equipment (such
as pipes, ducts, precipitators, gas scrubbers, dynamic scraped surface heat exchangers, etc.) and
machines (for instance, internal combustion engines and gas turbines), the external flow over all
kind of vehicles such as cars, airplanes, ships and submarines,...



Figure 3: Atmospheric turbulence

Because of the high irregularity of turbulent flows, turbulence problems are always treated
statistically rather than deterministically. That is why one can consider turbulence as a part of
statistical physics. A specific point of turbulence that is worth being highlighted is the energy
cascade: large eddies are unstable and eventually break up originating smaller eddies, and the
kinetic energy of the initial large eddy is divided into the smaller eddies that stemmed from it.
These smaller eddies undergo the same process, giving rise to even smaller eddies which inherit
the energy of their predecessor eddy, and so on. In this way, the energy is passed down from the
large scales of the motion to smaller scales until reaching a sufficiently small length scale such
that the viscosity of the fluid can effectively dissipate the kinetic energy into internal energy.

From the mathematical angle, energy transfers are understood as follows. It is commonly
admitted that the motion of an incompressible flow is ruled by the Navier-Stokes equation:
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The local dissipation of energy in a set A is given by:
v

In 1941, Kolmogorov suggested a statistical approach of the local dissipation of energy, called
the K41 theory. Roughly speaking, he postulated that, for turbulent flows, the local dissipation of
energy is

1. spatially homogeneous, its distribution is invariant under space translations,
2. statistically isotrop, its distribution is invariant under rotations,
3. self similar, that is, for some «« > 0 and for all A > 0, we have
e(AA) "2 A%€(A).
In that case, the power law spectrum is linear, ie
E[e(B(0,7))1] = r&@

where ¢ is a linear function of ¢ and B(0, r) stands for the ball centered at 0 with radius 7.
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Largely motivated by the K41 theory, the study of self similar stochastic processes has widely
spread out ever since (Brownian motion, fractional Brownian motion, a-stable Levy processes,...).

However, following the celebrated Landau’s objection, Kolmogorov and Obukhov revisited in
1962 the K41 theory to postulate what is now known as the KO62 theory. The main change change
is the point 3. Experimental facts and datas have shown that the power law spectrum is clearly
not linear. The nonlinearity of the spectrum is related with the phenomenon of intermittency in
turbulence. Moreover, they both make the assumption of lognormality of the random variable
e(A).

The nonlinearity of the power law spectrum is related to the following notion of stochastic self
similarity, called stochastic scale invariance,

e(AA) o AP e(A),

where A, @ > 0 and 2, is a random variable independent of €(A). To understand such a relation,
it is convenient to study the simplest situation when the random variable (2, is Gaussian: the
underlying theory is then called Gaussian Multiplicative Chaos. The purpose of this lecture is to
introduce and study the theory of Gaussian Multiplicative Chaos.

Motivations in finance

The first mathematical model for the evolution of a stock price is due to Bachelier in 1900: it is
a Brownian motion. This model had been used for 60 years. In 1965, Samuelson suggested to
rather use a geometric Brownian motion. That is what Black, Scholes and Merton successfully
did in 1973.

However, the recent market crashes confirmed that this model is far from being suitable. In
particular, extreme (or rare) events occur in reality much more often than predicted by such mod-
els: with such models, the probability of a crash is so small that the crashes of 1987 and 2009
are quite impossible. Several works, in particular Mandelbrot’s and Fama’s in the sixties, already
pointed out the fact that stock process evolution is far from being Gaussian.

A statistical study of financial markets shows that there are some "universal properties" shared
by stock or indices, called "stylized facts" of markets. The log-price X; of a good model should
satisfy:

1. stationarity of th returns, ie (X}); has stationary increments,
2. decorrelation: E[X(X; — X;)] = 0 for s < t (see figure 4)
3. clong-range correlations of the volatility < X > (see figure 5):

A
(1+1t)~

Corr( <X >0, <X > ) =

with p € [0;0.5]. The limiting case ¢ — 0 can also be modelized with correlations of log
type: A — Bln(1 +¢).
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(a) NASDAQ (b) SPS00

Figure 4: Daily empirical correlations of indices Nasdaq and SP500 over the period 2001-2009
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Figure 5: Empirical correlations of the volatility of indices Nasdaq and SP500 over the period
2001-2009

Mandelbrot’s idea is to modelize the evolution of the log price with a MRW (Multifractal

Random Walk)
Xt

that is a Brownian motion B seen at the time of an increasing stochastic process M with prop-
erties very close to those of the local energy dissipation in turbulence, for instance a Gaussian
Multiplicative Chaos. The process M can then be seen as the volatility process and possesses
intermittency properties that are close to those observed experimentally (see figure 6).
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FReturns MAW: lambda*2=0 (Black-Scholes)
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(c) Returns simulated with MRW (d) Returns simulated with MRW

Figure 6: Intermittency in financial markets



