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1 Introduction

1.1 Motivations in turbulence

In fluid dynamics, turbulence is a flow regime in which the velocity field presents unsteady vortices
on many scales.

Figure 1: Vortices in a stream

Turbulent flows are thus
characterized by a highly
irregular aspect, an unpre-
dictable behaviour and the
existence of many time or
space scales. Such flows
arise when the source of
kinetic energy making the
fluid move is much greater
than viscosity forces of the
fluid. Inversely, the fluid is
said to be laminar when it
is smooth.

There are many examples of turbulent flows: the mixing of warm and cold air in the atmosphere
by wind which causes clear-air turbulence experienced during airplane flight as well as poor as-
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(a) Steam and smould (b) Wake turbulence

Figure 2: Examples of turbulence

tronomical seeing, most of the terrestrial atmospheric circulation, the oceanic and atmospheric
mixed layers and intense oceanic currents, the flow conditions in many industrial equipment (such
as pipes, ducts, precipitators, gas scrubbers, dynamic scraped surface heat exchangers, etc.) and
machines (for instance, internal combustion engines and gas turbines), the external flow over all
kind of vehicles such as cars, airplanes, ships and submarines,...

Figure 3: Atmospheric turbulence

Because of the high irregularity of turbulent flows, turbulence problems are always treated
statistically rather than deterministically. That is why one can consider turbulence as a part of
statistical physics. A specific point of turbulence that is worth being highlighted is the energy
cascade: large eddies are unstable and eventually break up originating smaller eddies, and the
kinetic energy of the initial large eddy is divided into the smaller eddies that stemmed from it.
These smaller eddies undergo the same process, giving rise to even smaller eddies which inherit
the energy of their predecessor eddy, and so on. In this way, the energy is passed down from the
large scales of the motion to smaller scales until reaching a sufficiently small length scale such
that the viscosity of the fluid can effectively dissipate the kinetic energy into internal energy.

From the mathematical angle, energy transfers are understood as follows. It is commonly
admitted that the motion of an incompressible flow is ruled by the Navier-Stokes equation:

∂

∂t
u+ (u · ∇)u = −∇p+ ν4u+ f et ∇ · u = 0. (1)
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The local dissipation of energy in a set A is given by:

ε(A) =
ν

2

∫
A

∑
i,j

(∂iuj + ∂jui)
2 dx. (2)

In 1941, Kolmogorov suggested a statistical approach of the local dissipation of energy, called
the K41 theory. Roughly speaking, he postulated that, for turbulent flows, the local dissipation of
energy is

1. spatially homogeneous, its distribution is invariant under space translations,

2. statistically isotrop, its distribution is invariant under rotations,

3. self similar, that is, for some α > 0 and for all λ > 0, we have

ε(λA)
law
= λαε(A).

In that case, the power law spectrum is linear, ie

E[ε(B(0, r))q] = rξ(q)

where ξ is a linear function of q and B(0, r) stands for the ball centered at 0 with radius r.

Largely motivated by the K41 theory, the study of self similar stochastic processes has widely
spread out ever since (Brownian motion, fractional Brownian motion, α-stable Levy processes,...).

However, following the celebrated Landau’s objection, Kolmogorov and Obukhov revisited in
1962 the K41 theory to postulate what is now known as the KO62 theory. The main change change
is the point 3. Experimental facts and datas have shown that the power law spectrum is clearly
not linear. The nonlinearity of the spectrum is related with the phenomenon of intermittency in
turbulence. Moreover, they both make the assumption of lognormality of the random variable
ε(A).

The nonlinearity of the power law spectrum is related to the following notion of stochastic self
similarity, called stochastic scale invariance,

ε(λA)
loi
= λαeΩλε(A),

where λ, α > 0 and Ωλ is a random variable independent of ε(A). To understand such a relation,
it is convenient to study the simplest situation when the random variable Ωλ is Gaussian: the
underlying theory is then called Gaussian Multiplicative Chaos. The purpose of this lecture is to
introduce and study the theory of Gaussian Multiplicative Chaos.

1.2 Motivations in finance

The first mathematical model for the evolution of a stock price is due to Bachelier in 1900: it is
a Brownian motion. This model had been used for 60 years. In 1965, Samuelson suggested to
rather use a geometric Brownian motion. That is what Black, Scholes and Merton successfully
did in 1973.
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However, the recent market crashes confirmed that this model is far from being suitable. In
particular, extreme (or rare) events occur in reality much more often than predicted by such mod-
els: with such models, the probability of a crash is so small that the crashes of 1987 and 2009
are quite impossible. Several works, in particular Mandelbrot’s and Fama’s in the sixties, already
pointed out the fact that stock process evolution is far from being Gaussian.

A statistical study of financial markets shows that there are some "universal properties" shared
by stock or indices, called "stylized facts" of markets. The log-price Xt of a good model should
satisfy:

1. stationarity of th returns, ie (Xt)t has stationary increments,

2. decorrelation: E[Xs(Xt −Xs)] = 0 for s < t (see figure 4)

3. clong-range correlations of the volatility < X > (see figure 5):

Corr
(
< X >0,1, < X >t,t+1

)
=

A

(1 + t)µ

with µ ∈ [0; 0.5]. The limiting case µ → 0 can also be modelized with correlations of log
type: A−B ln(1 + t).

(a) NASDAQ (b) SP500

Figure 4: Daily empirical correlations of indices Nasdaq and SP500 over the period 2001-2009

Mandelbrot’s idea is to modelize the evolution of the log price with a MRW (Multifractal
Random Walk)

Xt = BMt ,

that is a Brownian motion B seen at the time of an increasing stochastic process M with prop-
erties very close to those of the local energy dissipation in turbulence, for instance a Gaussian
Multiplicative Chaos. The process M can then be seen as the volatility process and possesses
intermittency properties that are close to those observed experimentally (see figure 6).
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(a) NASDAQ (b) SP500

Figure 5: Empirical correlations of the volatility of indices Nasdaq and SP500 over the period
2001-2009

2 Convexity inequalities for Gaussian random variables

2.1 Background

We equip Rd with the inner product

〈x, y〉 =
d∑
i=1

xiyi.

If X = (X1, . . . , Xd) is a square integrable random vector, the covariance matrix is defined by:

KX = E
[
(X − E[X]) · (X − E[X])T

]
.

It is symmetric and positive. If X is Gaussian, its characteristic function is given by:

∀u ∈ Rd, φX(u) = exp
(
i〈u,E[X]〉 − 1

2
〈u,KXu〉

)
.

Definition 1. A stochastic process (Xt)t∈T (where T is an arbitrary index set) is said Gaussian if
and only if all its marginals are Gaussian, ie (Xt1 , . . . , Xtn) is Gaussian for all t1, . . . , tn ∈ T .

If (Xt)t∈T is a square integrable random process, we define its covariance kernel by:

∀u, v ∈ T, fX(u, v) = cov(Xu, Xv).

Definition 2. A stochastic process (Xt)t∈Rd is called stationary if and only if, for every z ∈ Rd,
both processes (Xt)t∈Rd and (Xz+t)t∈Rd have the same law.

When X is a stationary Gaussian process, its covariance kernel fX(u, v) only depends on the
difference u− v. We can thus write

fX(u, v) = g(u− v)

5



(a) SP500 returns over 2001-2009 (b) Returns simulated with Black-Scholes

(c) Returns simulated with MRW (d) Returns simulated with MRW

Figure 6: Intermittency in financial markets

for some function g that is necessarily even and of positive type, namely that, for n ≥ 1, all
t1, . . . , tn ∈ Rd and all x1, . . . , xn ∈ C, we have:

n∑
i,j=1

xixjg(ti − tj) ≥ 0.

The function g is then called covariance kernel of the stationary Gaussian process X .

Theorem 3. Let f be a real valued of positive type over Rd and continuous at the origin 0. Then
there is a unique measure µ sur Rd, which turns out to be finite and positive, such that

f(t) =

∫
Rd
ei〈t,x〉 µ(dx).

When f is integarble then the measure µ possesses a density g with respect to the Lebesgue
measure, which is given by

g(t) =
1

(2π)d

∫
Rd
e−i〈t,x〉f(t) dt.

So, when X is a stationary Gaussian process, its covariance kernel is the Fourier transform of
a finite positive measure, called the spectral measure of the process X .

About existence of stationary Gaussian processes, we claim

Theorem 4. Let f be a function of positive type over Rd. Then there is a stationary centered
Gaussian process X admitting f as spectral measure.
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2.2 Convexity inequalities

Lemma 5. Let (Xi)1≤i≤n and (Yi)1≤i≤n be two centered independent Gaussian. Let (pi)1≤i≤n be a
finite family of positive real scalars. If φ : R+ → R is a smooth function with at most polynomial
growth at infinity, we define:

ϕ(t) = E
[
φ
( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

with
Zi(t) =

√
tXi +

√
1− tYi.

Then we have

∀t ∈]0, 1[, ϕ′(t) =
1

2

n∑
i,j=1

pipj
(
E[XiXj]− E[YiYj]

)
E
[
eZi(t)+Zj(t)−

1
2

E[Z2
i (t)]− 1

2
E[Z2

j (t)]φ′′(Wn,t)
]

where

Wn,t =
n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)].

Preuve. We first differentiate the expression of ϕ to obtain

ϕ′(t) = E
[1

2

n∑
i=1

pi(
1√
t
Xi−

1√
1− t

Yi−E[X2
i ]+E[Y 2

i ])eZi(t)−
1
2

E[Z2
i (t)]φ′

( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

Then we use the integration by parts formula for Gaussian random variables:

Lemma 6. Let (X, Y ) ∈ R × Rd be a centered Gaussian random vector and f : Rd → R be
a smooth function such that f , as well as its gradient, has at most polynomial growth at infinity.
Then

E[Xf(Y )] = E[XY ] · E[∇f(Y )].
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With the help of the lemma, we deduce the following computations for ϕ′:

ϕ′(t) =E
[1

2

n∑
i=1

pi(
1√
t
Xi −

1√
1− t

Yi)e
Zi(t)− 1

2
E[Z2

i (t)]φ′
( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

− E
[1

2

n∑
i=1

pi(E[X2
i ]− E[Y 2

i ])eZi(t)−
1
2

E[Z2
i (t)]φ′

( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

=
1

2

n∑
i,j=1

pipjE
[
(

1√
t
Xi −

1√
1− t

Yi)(
√
tXj +

√
1− tYj)

]
× E

[
eZi(t)−

1
2

E[Z2
i (t)]eZj(t)−

1
2

E[Z2
j (t)]φ′′

( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

+
1

2

n∑
i

piE
[
(

1√
t
Xi −

1√
1− t

Yi)(
√
tXi +

√
1− tYi)

]
E
[
eZi(t)−

1
2

E[Z2
i (t)]φ′

( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

− E
[1

2

n∑
i=1

pi(E[X2
i ]− E[Y 2

i ])eZi(t)−
1
2

E[Z2
i (t)]φ′

( n∑
i=1

pie
Zi(t)− 1

2
E[Z2

i (t)]
)]

=
1

2

n∑
i,j=1

pipj
(
E[XiXj]− E[YiYj]

)
E
[
eZi(t)+Zj(t)−

1
2

E[Z2
i (t)]− 1

2
E[Z2

j (t)]φ′′(Wn,t)
]
,

which completes the proof.

Preuve du lemme 6. We first consider the case of independent centered and normalized Gaussian
random variables X ∈ R, Y ∈ Rd. Let A ∈Md(R) and B ∈ Rd. We have:

E[Xf(B ·X + AY )] =
1

(2π)d+1

∫
R×Rd

xf(B · x+ Ay)e−
1
2

(x2+y2) dxdy

=
1

(2π)d+1

∫
R2

f(B · x+ Ay)∂x
(
− e−

1
2

(x2+y2)
)
dxdy

=
1

(2π)d+1

∫
R2

B · ∇f(B · x+ Ay)e−
1
2

(x2+y2) dxdy

= E[B · ∇f(B ·X + AY )].

Now we consider the case of a couple (X ′, Y ′) ∈ R×Rd that is centered but not independent. Set

X =
X ′

a
and Y = c−1(Y ′ − bX ′)

with

a = Var(X ′)1/2, b = E[X ′Y ′]/Var(X ′), c =
√

Var(Y ′)− E[X ′Y ′]E[X ′Y ′]t/Var(X ′).

Then X, Y are independent centered normalized Gaussian random variables. We deduce:

E[X ′f(Y ′)] = aE[Xf(cY + baX)]

= a2E[b · ∇f(baX + cY )],

which reads
E[X ′f(Y ′)] = E[X ′Y ′] · E[∇f(Y ′)].
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Theorem 7. (Comparison principle) Let (Xi)1≤i≤n and (Yi)1≤i≤n be two centered gaussian vec-
tors such that:

∀i, j, E[XiXj] ≤ E[YiYj].

Then:

1. for each convex function F : R+ → R:

E
[
F
( n∑
i=1

pie
Xi− 1

2
E[X2

i ]
)]
≤ E

[
F
( n∑
i=1

pie
Yi− 1

2
E[Y 2

i ]
)]
,

2. if we further assume
∀i, E[X2

i ] = E[Y 2
i ]

then for each increasing function F : R+ → R:

E
[
F
(

sup
i=1,...,n

Yi
)]
≤ E

[
F
(

sup
i=1,...,n

Xi

)]
.

Preuve.

1. without loss of generality, we may assume that X and Y are independent. We can then
apply the previous lemma and use the fact that the derivative is of negative sign.

2. It is sufficient to treat the case when F = 1I]x,∞[ for some constant x ∈ R. Let β be a
postive scalar. We apply 1. to the convex function φ(u) = e−e

−βxu, to the random vectors
(βXi)1≤i≤n and (βYi)1≤i≤n and to pi = eβ

2E[X2
i ]/2 to obtain:

E
[
e−

Pn
i=1 e

β(Xi−x)] ≤ E
[
e−

Pn
i=1 e

β(Yi−x)].
Then we let β go to +∞ to get:

IP
(

sup
i=1,...,n

Xi < x
)
≤ IP

(
sup

i=1,...,n
Yi < x

)
.

Corollary 8. Let (Xx)x∈Rd and (Yx)x∈Rd be two centered Gaussian vectors such that their co-
variance kernels are continuous and satisfy:

∀x, x′ ∈ Rd, fX(x, x′) ≤ fY (x, x′).

Let µ be a positive Radon measure over Rd. Then for each convex function F : R+ → R, we
have:

E
[
F
( ∫ b

a

eXt−
1
2

E[X2
t ]µ(dt)

)]
≤ E

[
F
( ∫ b

a

eYt−
1
2

E[Y 2
t ]µ(dt)

)]
.

Remark. All the previous results are valid with the same proofs when we do not assume that the
considered Gaussian fields are stationary.
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3 Gaussian multiplicative chaos

3.1 Introduction and setup

We define M+ as the space of positive Radon measures on Rd for d ≥ 1. Let p be a real valued
continuous function of positive type on Rd. The function p is therefore the covariance kernel of
some centered stationary Gaussian process X:

∀x, y ∈ Rd, p(x− y) = E[XxXy]. (3)

To the process X , we associate the random weight:

P (x) = exp
(
Xx −

1

2
E[(Xx)

2]
)

= exp
(
Xx −

1

2
p(0)

)
. (4)

We stress that, in that way, the random weight is normalized:

∀x ∈ Rd, E[P (x)] = 1. (5)

Furthermore, for any α > 0, we have

E[(P (x))α] = exp
(1

2
(α2 − α)p(0)

)
. (6)

The random weight P acts on M+ as follows. To each measure σ ∈ M+, we associate the
random Radon measure

Pσ(dx) = P (x)σ(dx).

Note that for every compact set K of Rd, we have:

E[Pσ(K)] = σ(K).

Let us denote by λ the Lebesgue measure on Rd. In order to obtain a stationary random measure,
we have to choose σ = λ (up to a multiplicative constant). Our purpose is to choose the covariance
kernel p so as to obtain a nonlinear power law spectrum for the random measure Pλ. For instance,
for d = 1 and because of the continuity of p at x = 0, a straightforward computation shows that:

E[(Pλ[0, t])α] ' tαE[(P (0))α] = tα exp
(1

2
(α2 − α)p(0)

)
as t→ 0.

The power law spectrum is linear: the limit as t goes to 0 of the quantity

ln E[(Pλ[0, t])α]

ln t

is linear w.r.t. α. This argument shows that the above construction is not general enough. We
must be able to deal with covariance kernels p that may diverge around the origin. However,
such kernels are associated to Gaussian processes with infinite variance! That can be done by
considering X not as a pointwise defined process but as a random distribution: X is a Gaussian
distribution such that for each smooth functions ϕ, ψ with compact support

E[X(ϕ)X(ψ)] =

∫
ϕ(x)ψ(y)p(x− y) dxdy.
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The main difficulty is now to define random measures that can be formally understood as

K 7→
∫
K

exp
(
Xx −

1

2
E[(Xx)

2]
)
dx, (7)

because we must give sense to the exponential of a distribution, which is not straightforward. This
is the main purpose of the theory of Gaussian multiplicative chaos.

Remark. A particular type of Gaussian distribution has recently received much attention: the
Gaussian Free Field. When X is a GFF, the formal measure defined by 7 is called the Quantum
measure (see [7, 17]) in the context of the KPZ formula [12].

The main idea of the theory is to assume that the "possibly divergent" kernel p can be written
as a sum of positive continuous covariance kernels pn on Rd:

∀x ∈ Rd, p(x) =
+∞∑
n=1

pn(x). (8)

Note that the sum perfectly makes sense as the functions pn are positive. Such kernels p are said
to be of σ-positive type. Each pn thus can be seen as the covariance kernel of a stationary centered
Gaussian process Xn and, without loss of generality, we may assume that the processes (Xn)n are
independent. For n ∈ N, we define the stationary centered Gaussian process

∀x ∈ Rd, Y n
x = X1

x +X2
x + · · ·+Xn

x

with associated covariance kernel

qn(x) = p1(x) + p2(x) + · · ·+ pn(x). (9)

To the process Y n, we associate the random weight

Qn(x) = exp
(
Y n
x −

1

2
E[(Y n

x )2]
)

= exp
(
Y n
x −

1

2
qn(0)

)
.

For each Radon measure σ ∈M+ and n ≥ 1, we define the Radon random measure

(Qnσ)(dx) = Qn(x)σ(dx).

For each compact set K of Rd, we have:

E[Qnσ(K)] = σ(K).

Actually, it turns out that the sequence (Qnσ(K))n is a martingale. Let Fn be the sigma field
generated by the processes {Xk

u ; k ≤ n, u ∈ Rd}. For each bouded Borelian set A of Rd, we have

E[Qnσ(A)|Fn−1] =

∫
A

Qn−1(x)E[exp
(
Xn
x −

1

2
E[(Xn

x )2]
)
]σ(dx) = Qn−1σ(A).

The sequence (Qnσ(A))n is a positive martingaleand therefore converges almost surely towards a
positive random variable denoted by Qσ(A). It can be checked (use the Caratheodory’s extension
theorem) that, almost surely, the sequence of measure (Qnσ(A))n weakly converges towards a
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positive Radon measure on Rd, denoted by Qσ. The linear operator Q : σ ∈ M+ 7→ Qσ is called
operator of multiplicative chaos associated to the kernel p. We will see that this operator does not
depend on the decomposition (8) of p.

In what follows, we are especially interested in the case when

p(x) = γ2 ln+
T

|x|
+ g(x)

where g is a continuous bounded function on Rd. The parameter γ2 is often called intermittency
parameter.

3.2 Support et degeneracy

Let B be a non empty ball of Rd and σ ∈M+. It is plain to see that the event {Qσ(B) > 0} is an
event of the asymptotic sigma field generated by the processes (Xn)n. It thus has probability 0 or
1. By considering an exhaustive sequence of balls of Rd, we deduce

Proposition 9. The event {Qσ ≡ 0} has probability 0 or 1.

In the same spirit, we have for the Lebesgue measure λ:

Proposition 10. Either of the following situations occurs with probability 1:

1. almost surely, Qλ ≡ 0.

2. for every ball B of Rd,
Qσ(B) > 0.

In particular, when it is non trivial, the random measure Qλ admits Rd as support.

Definition 11. • If IP(Qσ ≡ 0) = 1, we will say that Q is degenerated at σ, otherwise we will
say that Q is non degenerated at σ.

• Consider a bounded Borelian set A of Rd. Since (Qnσ(A))n is a positive martingale, it is
regular (ie converges in L1) if and only if E[Qσ(A)] = σ(A). In the case when (Qnσ(A))n
is regular for each bounded Borelian set A of Rd , we will say that Q is strongly non
degenerated at σ.

For σ ∈M+, we define the postive Radon random measures:

σ0(A) = E[Qσ(A)], σ1(A) = σ(A)− σ0(A).

Note that we have:
E[Qσ(A)|Fn] = Qnσ0(A),

so that (Qnσ0(A))n is a regular martingale. We deduce that σ can be decomposed in two measures
σ = σ0 + σ1 such that

E[Qσ0(A)] = σ0(A), E[Qσ1(A)] = 0.

Put in other words, we have proved
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Theorem 12. Each measure σ ∈ M+(Rd) can be decomposed into the sum of two measures
σ0, σ1 ∈M+(Rd) such that:

• Q is degenerated at σ1,

• Q is strongly non-degenerated at σ0.

3.3 Uniqueness

We have just seen how to define a Gaussian multiplicative chaos

K 7→
∫
K

exp
(
Xx −

1

2
E[(Xx)

2]
)
dx,

where X is a Gaussian distribution with covariance kernel

p(x) =
+∞∑
n=1

pn(x).

The first important question that we have to answer is the following: what happens if we have two
decompositions

p(x) =
+∞∑
n=1

pn(x) =
+∞∑
n=1

p′n(x)

of the kernel p? Are the laws of the resulting random measures identical? Of course, we will see
that the answer is positive and this is the cornerstone of the theory.

Theorem 13. Choose σ ∈ M+. Let (pn)n and (p′n)n be two families of continuous positive
covariance kernels such that ∑

n

pn(x) =
∑
n

p′n(x).

The associated multiplicative chaos Qσ and Q′σ have the same law.

Sketch of proof.
Step 1: prove that the chaos operators Q and Q′ are degenerated/strongly non degenerated at the
same measures (we do not give the proof but it relies on Corollary 8 in a way similar to that
explained in step 2).
Step 2: Let K be a compact subset of Rd. Because of the step 1, we may assume that both
martingales (Qnσ(K))n and (Q′nσ(K))n are regular.

Fix N ∈ N∗. Denote by (qn)n and (q′n)n the sequences of partial sums. The sequence (qn −
q′N)n converges increasingly towards q − q′N , which is a positive function. Therefore the negative
part ((qn − q′N)−)n converges decreasingly towards 0. Dini’s theorem ensures that this latter
convergence is uniform. So, for a given ε > 0 and n large enough, we have

q′N(x) ≤ qn(x) + ε

over K. Thus we can apply Corollary 8 to obtain

E
[
F
(
Q′Nσ(A)

)]
≤ E

[
F
(
Qnσ(A)e

√
εY− ε

2

)]
13



for every Borelian subset A ⊂ K, F convex function and Y centered normalized Gaussian vari-
able independent of Qn. If we further assume that F is Lipschitzian (with Lipschitz constant L)
we have

E
[
F
(
Q′Nσ(A)

)]
≤E
[
F
(
Qnσ(A)e

√
εY− ε

2

)]
≤E
[
F
(
Qnσ(A)

)]
+ LE

[
Qnσ(A)|e

√
εY− ε

2 − 1|
]

=E
[
F
(
Qσ(A)

)]
+ Lλ(A)E

[
|e
√
εY− ε

2 − 1|
]
.

In the last equality, we have used the fact that (see Corollary 8)

E
[
F
(
Qσ(A)

)]
= lim

n→∞
↑ E
[
F
(
Qnσ(A)

)]
.

For the same reason, we can take the limit as N goes to infinity. Since ε is arbitrary, we deduce

E
[
F
(
Q′σ(A)

)]
≤ E

[
F
(
Qσ(A)

)]
.

Of course, the symmetric argument gives us the reversed inequality so that we can place = in the
above relation. We deduce that Q′(A) and Q(A) have the same law. We can carry out the same
job for the sums

n∑
i=1

λiQ(Ai) and
n∑
i=1

λiQ
′(Ai)

with λi ≥ 0. This shows that the random measures Qσ and Q′σ have the same law.

3.4 Multifractality, stochastic scale invariance

Now we investigate the action of the chaos operator Q on the Lebesgue measure λ. We stress
that the random measure Qλ is stationary, namely that its law is invariant under translations. The
motivation to study the Lebesgue measure, beyond the stationarity, is the fact that the Lebesgue
measure possesses scaling properties. Well chosen chaos then inherit some nice stochastic scaling
properties that we are going to explain below.

We assume that the covariance kernel p of the chaos operator is given by

p(x) = γ2 ln+
1

|x|
+ g(x) (10)

where g is a continuous bounded function on Rd. Kahane [11] proved that:

Theorem 14. (Kahane 1985)
- if γ2 ≥ 2d, the associated chaos operator (10) is degenerated at the Lebesgue measure.
- if λ2 < 2d, the associated chaos operator (10) is strongly non degenerated at the Lebesgue
measure.

Remark. -For instance, it is plain to see that all kernels p of the form

p(x) =

∫ +∞

1

k(u|x|)
u

du,

14



where k is a continuous positive covariance kernel, can be rewritten as in (10). The intermittency
parameter γ2 is then given by k(0).
-When X is a Gaussian Free Field on a smooth domain D ⊂ R2 grounded at 0 on the boundary
of D, its covariance kernel is given by

p(x, y) = G(x, y)

where G is the Green function of the Laplacian on D, ie a distributional solution of the equation

4G(x, ·) = −2πδx.

Then G can be rewritten as

G(x, y) = 2π

∫ +∞

0

pD(t, x, y) dt

where pD are the transition densities of the symmetric semi-group (Pt)t defined by

∂tPtf = 4Ptf on D, Ptf ∈ H1
0 (D).

It is plain to see that pD is given by

pD(t, x, y) = IPx(Bt ∈ dy, τD > t),

where B is a standard 2-dimensional Brownian motion and τD the first exit time of B from the
domain D. G is of σ positive type since it can be rewritten as

G(x, y) =
∑
n∈N

pn(x, y)

with

pn(x, y) = 2γ2π

∫ 2−n

2−n−1

pD(t, x, y) dt+ 2γ2π

∫ 2n+1

2n
pD(t, x, y) dt.

We choose such a decomposition to get rid of the possible singularities at t = 0 ot t = +∞. The
kernels pn are continuous, positive (both because pD is) and of positive type since∫

R2

∫
R2

f(x)f(y)

∫ b

a

pD(t, x, y) dt dxdy =

∫ b

a

∫
R2

f(x)Ptf(x) dxdt

=

∫ b

a

∫
R2

Pt/2f(x)Pt/2f(x) dxdt

≥ 0.

Theorem 15. Consider a covariance kernel p given by (10) for some λ2 < 2d. The chaos (w.r.t.
the Lebesgue measure) Qλ possesses a nonlinear power law spectrum: for any p ≥ 0 such
that Qλ admits a moment of order p (i.e. for p ∈ [0, 2d

γ2 [ see theorem 18), there is a constant
D = D(p,A) > 0 such that

E
[
Qλ(tA)p

]
' Dtξ(p) as t→ 0

where A is a bounded open set, and

∀p ∈ R, ξ(p) =
(
d+

λ2

2

)
p− λ2

2
p2. (11)
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Proof. The proof is left as an exercise. We just give an hint. First note that the theorem is easy to
prove when g ≡ 0 and then use Corollary 8 to deduce the general case.

Remark. Note that the power law spectrum in (11) is quadratic. This is because the involved
processes are Gaussian. It is possible to generalize the theory of multiplicative chaos to infinitely
divisible processes so as to obtain nonlinear power law spectrum of the type

∀p ∈ R, ξ(p) = dp− ψ(p)

where ψ is the characteristic function of any infinitely divisible law such that ψ(1) = 0.

We now focus on the situation when the function g is constant on a neighborhood of 0, or even
on the whole space Rd. As we will see, the chaos measure then possesses a nice stochastic self-
similarity property called stochastic scale invariance. We first justify the fact that we can choose
g constant on a neighborhood of 0.

Theorem 16. For d ≤ 2, the function

x 7→ λ2 ln+
T

|x|
(12)

is of σ-positive type. For d = 3, it is an open question to know if the kernel (12) is of σ-positive
type and for d ≥ 4, it is not even of positive type. Nevertheless, for d ≥ 3, we can find an isotropic
function g that is constant on a neighborhood of 0 and such that the kernel

p(x) = γ2 ln+
T

|x|
+ g(x) (13)

is of σ-positive type.

Proof. A straightforward computation yields:

ln+
T

|x|
=

∫ +∞

0

(t− |x|)+νT (dt)

where νT is the measure (δT is the Dirac mass at T ):

νT (dt) = 1I[0,T ](t)
dt

t2
+

1

T
δT (dt).

Hence for any µ > 0, we have:

ln+
T

|x|
=

1

µ
ln+

T µ

|x|µ
=

∫ +∞

0

(t− |x|µ)+νTµ(dt).

We are thus led to consider the possible values of µ > 0 such that the function (1 − |x|µ)+ is of
positive type: this is the Kuttner-Golubov problem (see [10]).

For d = 1, it is straightforward to see that (1 − |x|)+ is of positive type (compute the inverse
Fourier transform). In dimension 2, Pasenchenko [14] proved that the function (1− |x|1/2)+ is of
positive type on R2. We can thus write

γ2 ln+
T

|x|
=
∑
n≥1

pn(x)
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with

pn(x) =

∫ 1
n−1

1
n

(t− |x|µ)+νTµ(dt)

with µ = 1 in dimension 1 and µ = 1/2 in dimension 2.

We now focus on the second part ot the theorem and consider d ≥ 3. Let us denote by S the
sphere ofRd and by σ the unique uniform measure on the sphere such that σ(S) = 1. In particular,
the reader is reminded that this measure is invariant under rotations. We define the function

F (x) = γ2

∫
S

ln+
T

|〈x, s〉|
σ(ds). (14)

As σ is unvariant under rotations, the function F is isotrop. Let us compute F on the neighborhood
of 0. Fix x ∈ Rd such that |x| ≤ T . Write x = |x|e where e ∈ S. Then we have

F (x) = γ2

∫
S

ln
T

|x||〈e, s〉|
σ(ds) = γ2 ln

T

|x|
+ γ2

∫
S

ln
1

|〈e, s〉|
σ(ds).

Note that, by invariance under rotations, the second term matches γ2
∫
S

ln 1
|〈e1,s〉|σ(ds) (where e1

is any fixed vector of the sphere) and is therefore constant (it does not depend on x). Finally, we
just stress that the integral γ2

∫
S

ln 1
|〈e1,s〉|σ(ds) is finite: indeed, under the probability measure σ,

the random variable |〈e1, s〉| admits a density w.r.t. the Lebesgue measure given by

2Γ(d
2
)

Γ(1
2
)Γ(d−1

2
)
(1− y2)

d−3
2 1I[0,1](y) dy.

Theorem 17. Let p be a covariance kernel of σ-positive type given by

p(x) = γ2 ln+
T

|x|
+ g(x) (15)

where g is a continuous bounded function over Rd, constant over a ball B(0, T ). Then the asso-
ciated chaos Qλ is stochastically scale invariant:

∀ 0 < α < 1, (Qλ(αA))A⊂B(0,T )
law
= αdeYα−

1
2

E[Y 2
α ](Qλ(A))A⊂B(0,T ),

where Yα is a Gaussian random variable, independent of the measure (Qλ(A))A⊂B(0,T ), with
mean 0 and variance γ2 ln 1

α
.

Proof. Let

p(x) =
+∞∑
n=1

pn(x)

be a decomposition of p into a sum of positive continuous covariance kernels. We stick to the
notations introduced in subsection 3.1. For any Borelian set A ⊂ B(0, T ), we have:

Qnλ(αA) =

∫
αA

eY
n
x − 1

2
E[(Y nx )2] dx

= αd
∫
A

eY
n
αz− 1

2
E[(Y nαz)2] dz.
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By taking the limit as n → ∞, we can see that Qλ(α·) is, up to the multiplicative factor αd, a
Gaussian multiplicative chaos with kernel p(αx) on B(0, T ). Furthermore, for x ∈ B(0, T ) we
have

p(αx) = γ2 ln
1

α
+ γ2 ln+

T

|x|
+ g(αx) = γ2 ln

1

α
+ p(x).

Such a chaos can be obtained as the limit

lim
n→∞

αd
∫
A

eY
n
x − 1

2
E[(Y nx )2]+Yα− 1

2
E[(Yα)2] dx = αdeYα−

1
2

E[(Yα)2]Qλ(A)

where Yα is a Gaussian random variable with mean 0 and variance λ2 ln 1
α

, independent of Qλ.
Due to the uniqueness property of the law of the chaos, the result follows.

3.5 Moments

Theorem 18. Let Qλ be the multiplicative chaos asociated to the Lebesgue measure and to the
kernel p of the form (10). If γ2 < 2d then we have for q > 1:

∀K compact set, E[Qλ(K)q] < +∞⇐⇒ γ2 <
2d

q
. (16)

Proof. The complete proof of the theorem can be found in [11]. To have a rough idea of the
reasons that make this theorem is valid, we will just prove in dimension d = 1

∀K compact set, E[Qλ(K)q] < +∞ =⇒ γ2 <
2d

q
.

Fix n ∈ N. From the super-additivity of the mapping x ∈ R+ 7→ xq and the stationarity of the
measure Qλ, we have

E [Qλ[0; 1]q] = E
[(
Qλ[0;

1

n
] +Qλ[

1

n
;

2

n
] + · · ·+Qλ[

(n− 1)

n
; 1]

)q]
(17)

≥ E
[(
Qλ[0;

1

n
]

)q
+

(
Qλ[

1

n
;

2

n
]

)q
+ · · ·+

(
Qλ[

(n− 1)

n
; 1]

)q]
(18)

= nE
[(
Qλ[0;

1

n
]

)q]
(19)

We can use Theorem 15 to obtain

E
[(
Qλ[0;

1

n
]

)q]
≥ Dn−ξ(q) (20)

Necessarily, we deduce
1− ξ(q) ≤ 0,

which reads γ2 ≤ 2
q
.
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3.6 A few words about financial applications

In dimension 1, we can choose the kernel

p(x) = γ2 ln+
T

|x|

for some γ2 < 2. It is common in finance to denote by M the increasing process associated to the
multiplicative chaos applied to the Lebesgue measure:

∀t ≥ 0, Mt
notation

= Qλ([0, t]).

Mandelbrot suggested to change the time of a Brownian motion B with M to obtain a mathe-
matical model for the (log) price of the stocks/indices (σ > 0 is a parameter):

Xt =
√
σBMt .

On the financial markets, the observed values of the parameters for indices are closed to σ '
10−2, λ2 ' 0, 03 and T ' 5 − 10 years (there is actually a challenging theoretical problem in
estimating T ).

The process X possesses many properties observed on the market:

• X is a square integrable continuous martingale. The volatility is then defined as the quadratic
variations of the martingale, that it < X >t= σMt.

• Long-range correlations of the volatility:

Cov(M1,Mt+1 −Mt) =

∫ 1

0

∫ t+1

t

(eλ
2 ln+

T
|r−u| − 1) dr du ' T λ

2

tλ2

for 1� t� T .

• fat tails distribution...

In comparison with local volatility models, an important advantage of Mandelbrot’s approach
is also the simplicity of the model (3 parameters to estimate).
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