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2D Ising model:
(square grid) Spins σi = +1 or −1.

Hamiltonian:

H = −∑
〈ij〉 σiσj .

Partition function:

P(conf .) ∼ e−βH ∼ x# 〈+−〉,

where

x = e−2β∈ [0, 1] .



2D Ising model:
(square grid) Spins σi = +1 or −1.

Hamiltonian:

H = −∑
〈ij〉 σiσj .

Partition function:

P(conf .) ∼ e−βH ∼ x# 〈+−〉,

where

x = e−2β∈ [0, 1] .

Other �lattices� (planar graphs): H = −∑
〈ij〉 Jijσiσj .

P(conf .) ∼ ∏
〈ij〉:σi 6=σj

xij , xij ∈ [0, 1].



Phase transition, criticality:

x > xcrit x = xcrit x < xcrit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), −1 on the opposite arc (ba))



Phase transition, criticality:

x > xcrit x = xcrit x < xcrit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), −1 on the opposite arc (ba))
[Peierls `36; Kramers-Wannier '41]: xcrit = 1√

2+1
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Conformal invariance
(in the scaling limit):

Geometry:
single interface,
the whole loop ensemble

Correlations:
spin correlations, �boundary
change operators�, energy
density, fermionic observables

〈σ(z)〉ab
〈σ(z)〉+ := lim

δ→0

Eab[σ(zδ)]

E+[σ(zδ)]



Conformal invariance
(in the scaling limit):

Geometry:
single interface,
the whole loop ensemble

Theorem: (Smirnov-Ch., ∼ 08-10) Let, as δ → 0, discrete domains
(Ωδ; aδ, bδ) approximate a simply-connected domain (Ω; a, b). Then
the corresponding (random) discrete interfaces γδ converge to the
(random) conformally invariant curves SLE3(Ω; a,b).
Remarks: (i) SLEκ,κ > 0 (Stochastic Loewner Evolution or
Schramm-Loewner Evolution) is the one-parameter family of
random conformally invariant curves introduced by O.Schramm.
They are constructed dynamically in the half-plane (C+; 0,∞) via
the classical Loewner equation with the random driving force √κBt



Conformal invariance
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Geometry:
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Theorem: (Smirnov-Ch., ∼ 08-10) Let, as δ → 0, discrete domains
(Ωδ; aδ, bδ) approximate a simply-connected domain (Ω; a, b). Then
the corresponding (random) discrete interfaces γδ converge to the
(random) conformally invariant curves SLE3(Ω; a,b).
Remarks: (ii) We �rstly prove convergence to the conformally
covariant limits of the so-called basic fermionic observables
F δ

(Ωδ;aδ,bδ)
(zδ) which are discrete holomorphic (in zδ) functions

having the (discrete) martingale property w.r.t. the growing
interface (for any �xed zδ). Then, we identify the limiting law
with SLE3 using the so-called conformal martingale principle.



Conformal invariance
(in the scaling limit):

Geometry:
single interface,
the whole loop ensemble

Theorem: (Smirnov-Ch., ∼ 08-10) Let, as δ → 0, discrete domains
(Ωδ; aδ, bδ) approximate a simply-connected domain (Ω; a, b). Then
the corresponding (random) discrete interfaces γδ converge to the
(random) conformally invariant curves SLE3(Ω; a,b).
Remarks: (iii) The proof is �lattice-independent� and works not
only for the square grid, but also for the critical Ising models on
triangular and hexagonal lattices, and, more generally, for the
particular Ising model de�ned on an arbitrary isoradial graph. Note
that the conformally invariant limit is independent of the lattice.



Isoradial graphs. De�nition.

• isoradial graph Γ (black
vertices, all faces can be
inscribed into circles of equal
radii δ (the �lattice� mesh);
• dual isoradial graph Γ∗

(gray vertices);
• rhombic lattice
(Λ = Γ ∪ Γ∗, blue edges)
• and the set ♦ = Λ∗

(white �diamonds�).

(♠): we assume that rhombi angles are

uniformly bounded away from 0 and π.



Self-dual (critical) Ising model on isoradial graphs.
[C.Mercat '01; V. Riva, J. Cardy '06;

C. Boutillier, B. deTili�ere '09; ...]

Z =
∑

config.

∏

wi 6=wj

tan
θij

2

Basic fermionic observable:

F δ(z) :=
Zconfig .:aÃz · e−

i
2
winding(aÃz)

Zconfig .:aÃb · e−
i
2
winding(aÃb)

, z ∈ ♦.
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Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F δ is discrete holomorphic, i.e.,
satis�es some discrete version of
the Cauchy-Riemann identities.
Proof: Natural combinatorial
bijection between the two sets
of con�gurations involved into
F δ(z1), F δ(z2) gives one real
equation for any neighbors z1,2.
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Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F δ is discrete holomorphic, i.e.,
satis�es some discrete version of
the Cauchy-Riemann identities.
Proof: Natural combinatorial
bijection between the two sets
of con�gurations involved into
F δ(z1), F δ(z2) gives one real
equation for any neighbors z1,2.
Remarks: (i) there is a strong physical motivation for this de�nition
(coming from the �order and disorder operators� technique),
but one can easily de�ne the observable and derive holomorphicity
using simple combinatorial arguments (�local rearrangements�);
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satis�es some discrete version of
the Cauchy-Riemann identities.
Proof: Natural combinatorial
bijection between the two sets
of con�gurations involved into
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equation for any neighbors z1,2.
Remarks: (i) there is a strong physical motivation for this de�nition
(coming from the �order and disorder operators� technique);
(ii) this observable was suggested by S.Smirnov (∼06) as a crucial
tool for the rigorous proof of the Ising model conformal invariance
(for arbitrary planar domains, and not only the Moebius invariance
for the Ising model de�ned in a whole plane or a half-plane);



Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F δ is discrete holomorphic, i.e.,
satis�es some discrete version of
the Cauchy-Riemann identities.
Proof: Natural combinatorial
bijection between the two sets
of con�gurations involved into
F δ(z1), F δ(z2) gives one real
equation for any neighbors z1,2.
Remarks: (i) there is a strong physical motivation for this de�nition
(coming from the �order and disorder operators� technique);
(ii) this observable was suggested by S.Smirnov (∼06) as a crucial
tool for the rigorous proof of the Ising model conformal invariance;
(iii) several hard technical problems arises when passing to the limit
(non-smooth boundaries, Riemann-type boundary conditions etc).
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Isoradial graphs.
Y −∆ invariance.

↔

AB + C

ab
=

BC + A

bc

=
CA + B

ca
=

ABC + 1

1

↔ &

↔ &

[R. Costa-Santos '06] Local weights
satisfying Y −∆ relation
naturally lead to the isoradial
embedding of the graph.

Remark: There exists a strong connection between (a) the critical
Ising model, (b) the discrete complex analysis on isoradial graphs,
and (c) the �consistency approach� to discrete integrable systems.



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
Theorem: As δ → 0, properly normalized discrete holomorphic
observables δ−1/2F δ converge to holomorphic functions Ψ(Ω;a,b)

such that

Ψ(Ω;a,b)(z) = (φ′(z))1/2 ·Ψ(φΩ;φa,φb)(φz)

for any conformal mapping φ : Ω → φΩ.



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).

De�nition: For an edge a in
Ωδ, denote

εδ
+(a) := E+[σ(a])σ(a[)]



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).

Theorem: As δ → 0, properly
re-normalized discrete energy
densities δ−1 · (εδ

+(a)−√2/2)
converge to the continuum
limit EΩ having the following
covariance under conformal
mappings:

EΩ(a) = |φ′(z)| · EφΩ(φa).



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).

Moreover (C.Hongler ∼10),
all correlations of the
renormalized discrete energy
densities δ−1 · (εδ

+(aj)−
√

2/2)
converge to the continuum
limits, and this result extends
to any number of boundary
points bk , where the boundary
conditions change �+� to �−�.



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).

Main idea: Consider the
similar observable with a
�source point� a+. Then
F(a+) counts con�gurations
without a, while −F(a−)
counts con�gurations with a:

ε(a) =
F (a+)− (−F (a−))

F (a+) + (−F (a−))
.



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).
• Some ratios of spin correlations: done (Izyurov-Ch., ∼11).

Theorem: As δ → 0, the ratio

Eab[σ(w δ)]

E+[σ(w δ)]

tends to the conformally
invariant limit (namely,
cos[πhm(z , ab, Ω)]). and the
same holds for any number of
inner and boundary points.
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Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).
• Some ratios of spin correlations: done (Izyurov-Ch., ∼11).

F̃ δ(w) := Zconfig .:aÃw

×e−
i
2
winding(aÃw)

× (−1)#[loops around z]

× sign ± 1 depending
on the sheet of Ω̃δ

F̃ δ is a spinor holomorphic
observable de�ned on a
double-cover Ω̃δ of Ωδ.



Conformal invariance (in the scaling limit):

Correlations:
• Basic fermionic observables: done (Smirnov-Ch., ∼09).
• Energy density �eld: done (Hongler-Smirnov, ∼10).
• Some ratios of spin correlations: done (Izyurov-Ch., ∼11).

F̃ δ(w) := Zconfig .:aÃw

×e−
i
2
winding(aÃw)

× (−1)#[loops around z]

× sign ± 1 depending
on the sheet of Ω̃δ

Then
Eab[σ(w δ)]

E+[σ(w δ)]
=

F̃ δ(b)F δ(a)

F̃ δ(a)F δ(b)
.



Ratios of the spin correlations:
Theorem (Izyurov-Ch., ∼11): Let Ω ⊂ C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary γ0, and γ1, . . . , γm be some of the inner components
of ∂Ω. If discrete domains Ωδ approximate Ω as δ → 0, then

Eaδbδ [ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

E+[ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

→ ϑ
(Ω)
ab (γ1, . . . , γm) ,

where the limit is a conformal invariant of (Ω; a, b).



Ratios of the spin correlations:
Theorem (Izyurov-Ch., ∼11): Let Ω ⊂ C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary γ0, and γ1, . . . , γm be some of the inner components
of ∂Ω. If discrete domains Ωδ approximate Ω as δ → 0, then

Eaδbδ [ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

E+[ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

→ ϑ
(Ω)
ab (γ1, . . . , γm) ,

where the limit is a conformal invariant of (Ω; a, b).
Remark:
If γj = {wj} are just single points, then it does not matter, whether
γδ
j are single faces approximating wj or small boundary components

shrinking to {wj} as δ → 0: our proof works in both cases.



Ratios of the spin correlations:
Theorem (Izyurov-Ch., ∼11): Let Ω ⊂ C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary γ0, and γ1, . . . , γm be some of the inner components
of ∂Ω. If discrete domains Ωδ approximate Ω as δ → 0, then

Eaδbδ [ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

E+[ σ(γδ
1)σ(γδ

2) . . . σ(γδ
m) ]

→ ϑ
(Ω)
ab (γ1, . . . , γm) ,

where the limit is a conformal invariant of (Ω; a, b).
Corollary: For 2n + 2 boundary points the following is ful�lled:

Eaδ
0 ...aδ

2n+1
[ σ(γδ

1) . . . σ(γδ
m) ]

E+[σ(γδ
1) . . . σ(γδ

m) ]
→

Pf [ ζ−1
ajak

ϑ
(Ω)
ajak (γ1, . . . , γm) ] j<k

Pf [ ζ−1
ajak ] 06j<k62n+1

,

where ζΩ
ab = ζΩ

ab are conformal invariants of (Ω; a, b) independent of
single-point inner components. In particular, ζ

C+\{w1,..,wm}
ab = |b−a|.



Ratios of the spin correlations:
Exact computations in the half-plane:

In order to �nd ϑC+

∞,0(w1, ..wm) one should
solve the following �interpolation problem�:

Find a holomorphic spinor f de�ned on a double cover of
C+ \ {w1, ..,wm} and branching around each of wj such that
(i) f (z) = ±1 + O(z−1) as z →∞;
(ii) f (ζ) ∈ R for any ζ ∈ R;
(iii) f 2 has simple poles at all wj and res z=wj (f (z))2 ∈ iR+.

Then, ϑC+

∞,0(w1, ..,wm) = f (0).



Ratios of the spin correlations:
Exact computations in the half-plane:

In order to �nd ϑC+

∞,0(w1, ..wm) one should
solve the following �interpolation problem�:

Find a holomorphic spinor f de�ned on a double cover of
C+ \ {w1, ..,wm} and branching around each of wj such that
(i) f (z) = ±1 + O(z−1) as z →∞;
(ii) f (ζ) ∈ R for any ζ ∈ R;
(iii) f 2 has simple poles at all wj and res z=wj (f (z))2 ∈ iR+.

Then, ϑC+

∞,0(w1, ..,wm) = f (0).
Remark. This problem can be solved explicitly for any m > 1.
The answer includes some m ×m determinants, but do not involve
complicated analysis of the space of (system of) PDE's solutions
which is usual for classical CFT methods.
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Geometry:
• single interface: done;
• the whole loop ensemble: [? in progress ?]



Conformal invariance in the scaling limit. Summary.
Geometry:
• single interface: done;
• the whole loop ensemble: [? in progress ?]
Correlations:
• (basic fermionic observable): done;
• energy density �eld + boundary change operators: done;
• some ratios of spin correlations: done (arXiv:1105.5709);
• magnetization, spin-spin correlations: in progress

(taking the �source� point just nearby the branching,
one can express the logarithmic derivative of the
magnetization via spinor observables but some
rather involved technical problems appear;
ongoing project with C.Hongler and K.Izyurov).



Conformal invariance in the scaling limit. Summary.
Geometry:
• single interface: done;
• the whole loop ensemble: [? in progress ?]
Correlations:
• (basic fermionic observable): done;
• energy density �eld + boundary change operators: done;
• some ratios of spin correlations: done (arXiv:1105.5709);
• magnetization, spin-spin correlations: in progress

THANK YOU!


