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2D Ising model:
(square grid) Spins 0; = +1 or —1.

Hamiltonian:
H==30i0;.

Partition function:

P(conf.) ~ e PH ~ x# =)

where

x=e2c]0,1].




2D Ising model:

(square grid) Spins 0; = +1 or —1.
Hamiltonian:

Partition function:
P(conf.) ~ e PH ~ x# =)
where

x=e2c]0,1].

Other “lattices” (planar graphs): H = -3, Jjoio;.

P(conf.) ~ H<U>:U¢Uj xij, X €[0,1].



Phase transition, criticality:

X > Xerit X = Xerit X < Xerit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), —1 on the opposite arc (ba))
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X > Xerit X = Xerit X < Xerit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), —1 on the opposite arc (ba))
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Conformal invariance
(in the scaling limit):
Geometry:

single interface,
the whole loop ensemble

Theorem: (Smirnov-Ch., ~08-10) Let, as 6 — 0, discrete domains
(Q9; a%, b%) approximate a simply-connected domain (; a, b). Then
the corresponding (random) discrete interfaces v° converge to the
(random) conformally invariant curves SLE3(S2;a,b).

Remarks: (i) SLE,,, >z > 0 (Stochastic Loewner Evolution or
Schramm-Loewner Evolution) is the one-parameter family of
random conformally invariant curves introduced by O.Schramm.
They are constructed dynamically in the half-plane (C; 0, 00) via
the classical Loewner equation with the random driving force \/>B;



Conformal invariance
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Theorem: (Smirnov-Ch., ~08-10) Let, as 6 — 0, discrete domains
(Q9; a%, b%) approximate a simply-connected domain (; a, b). Then
the corresponding (random) discrete interfaces v° converge to the
(random) conformally invariant curves SLE3(S2;a,b).

Remarks: (ii) We firstly prove convergence to the conformally
covariant limits of the so-called basic fermionic observables
F(‘;é;aé’m)(z‘s) which are discrete holomorphic (in z°) functions
having the (discrete) martingale property w.r.t. the growing
interface (for any fixed z°). Then, we identify the limiting law
with SLE3 using the so-called conformal martingale principle.



Conformal invariance
(in the scaling limit):
Geometry:

single interface,
the whole loop ensemble

Theorem: (Smirnov-Ch., ~08-10) Let, as 6 — 0, discrete domains
(Q9; a%, b%) approximate a simply-connected domain (; a, b). Then
the corresponding (random) discrete interfaces v° converge to the
(random) conformally invariant curves SLE3(S2;a,b).

Remarks: (iii) The proof is “lattice-independent” and works not
only for the square grid, but also for the critical Ising models on
triangular and hexagonal lattices, and, more generally, for the
particular Ising model defined on an arbitrary isoradial graph. Note
that the conformally invariant limit is independent of the lattice.



Isoradial graphs. Definition.

' /X4 >~ e soradial graph T (black
> < vertices, all faces can be
J inscribed into circles of equal

radii ¢ (the “lattice” mesh);

e dual isoradial graph '™
(gray vertices);

e rhombic lattice
(N=T UT*, blue edges)

e and the set & = A*
(white “diamonds”).

% /f ( (M): we assume that rhombi angles are
ARE: \ ¥ ¥ uniformly bounded away from 0 and .




Self-dual (critical) Ising model on isoradial graphs.

[C. Mercat  '01; V.Riva, J.Cardy '06;

C. Boutillier, B. de Tiliere '09; ...]

= Z Htan%

config. w;#w;

Basic fermionic observable:

i

5 winding(a~z)

F&(Z) — Zconfig.:awz - e ze .

i

Zconfig :a~sb " € zwinding(a~b) ’



Self-dual (critical) Ising model on isoradial graphs.

Basic fermionic observable:

7 — I winding(a~~z)

) . Zconfig..a~sz " € 2
F (Z) T — L winding(a~+b) ’ z€¢.
Zconfig.:awb ce 2




Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F is discrete holomorphic, i.e.,
satisfies some discrete version of
the Cauchy-Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F(z1), F%(z) gives one real
equation for any neighbors z; 5.
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Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F is discrete holomorphic, i.e.,
satisfies some discrete version of
the Cauchy-Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F(z1), F%(z) gives one real
equation for any neighbors z; 5.

Remarks: (i) there is a strong physical motivation for this definition
(coming from the “order and disorder operators” technique),

but one can easily define the observable and derive holomorphicity
using simple combinatorial arguments (“local rearrangements”);



Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F is discrete holomorphic, i.e.,
satisfies some discrete version of
the Cauchy-Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F(z1), F%(z) gives one real
equation for any neighbors z; 5.

Remarks: (i) there is a strong physical motivation for this definition
(coming from the “order and disorder operators” technique);

(ii) this observable was suggested by S.Smirnov (~06) as a crucial
tool for the rigorous proof of the Ising model conformal invariance

(for arbitrary planar domains, and not only the Moebius invariance
for the Ising model defined in a whole plane or a half-plane);



Basic fermionic observable and its discrete holomorphicity.

For critical weights, the function
F is discrete holomorphic, i.e.,
satisfies some discrete version of
the Cauchy-Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F(z1), F%(z) gives one real
equation for any neighbors z; 5.

Remarks: (i) there is a strong physical motivation for this definition
(coming from the “order and disorder operators” technique);

(ii) this observable was suggested by S.Smirnov (~06) as a crucial
tool for the rigorous proof of the Ising model conformal invariance;
(iii) several hard technical problems arises when passing to the limit
(non-smooth boundaries, Riemann-type boundary conditions etc).



Isoradial graphs.
Y — A invariance.

ab bc

B CA+B_ABC+1
B ca o 1




. - B

H&

ab bC [R. Costa-Santos '06] Local We|ghts
satisfying Y — A relation
CA+B ABC+1 naturally lead to the isoradial

o 1 embedding of the graph.



. - B

ab - bc [R. Costa-Santos '06] Local weights

satisfying Y — A relation

CA+B ABC+1 naturally lead to the isoradial
=g 1 embedding of the graph.

Remark: There exists a strong connection between (a) the critical
Ising model, (b) the discrete complex analysis on isoradial graphs,
and (c) the “consistency approach” to discrete integrable systems.



Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).

Theorem: As 6 — 0, properly normalized discrete holomorphic
observables 6-1/2F% converge to holomorphic functions V(q.a,b)
such that

V(.a6)(2) = (8/(2))"? - V(ya.60.00) (62)

for any conformal mapping ¢ : Q — ¢S.



Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).

Definition: For an edge a in
Q%, denote

&3 (a) = Exfo()o()]




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).

Theorem: As § — 0, properly
re-normalized discrete energy
densities 071 - (£%.(a) — v/2/2)
converge to the continuum
limit £q having the following
covariance under conformal
mappings:

Ea(a) = [¢(2)] - Esa(da).




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).

Moreover (C.Hongler ~10),
all  correlations  of  the
renormalized discrete energy
densities 671 (5. (a;) — v2/2)
converge to the continuum
limits, and this result extends
to any number of boundary
points by, where the boundary

1 ”

conditions change “+" to “—".




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).

Main idea: Consider the
similar observable with a
“source point” a;i. Then
F(ay) counts configurations
without a, while —F(a_)
counts configurations with a:




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).
e Some ratios of spin correlations: done (lzyurov-Ch., ~11).

Theorem: As 6 — 0, the ratio

Eap[o(w’)]
Ei[o(wd)]
tends to the conformally
invariant limit (namely,

cos[rhm(z, ab, Q)]).




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).
e Some ratios of spin correlations: done (lzyurov-Ch., ~11).

Theorem: As 6 — 0, the ratio

Eap[o(w’)]
Ei[o(wd)]
tends to the conformally
invariant limit (namely,

cos[rhm(z, ab,Q)]), and the
same holds for any number of
inner and boundary points.




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).
e Some ratios of spin correlations: done (lzyurov-Ch., ~11).

F(S(W) ‘= Zconfig.:a~w
% e—éwinding(aww)
% (_1)#[loops around z]
x sign +1 depending
on the sheet of Q°

Fo is a spinor holomorphic
observable Ejveﬁned on a
double-cover Q9 of Q9.




Conformal invariance (in the scaling limit):

Correlations:

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, ~10).
e Some ratios of spin correlations: done (lzyurov-Ch., ~11).

F{S( W) ‘= Zconfig.:a~w

% e—éwinding(aww)
% (_1)#[loops around z]

x sign 4 1 depending
on the sheet of 9
Then
Ealo(w)] _ F(b)F(a)

Eilo(w?)]  Fo(a)F3(b)




Ratios of the spin correlations:

Theorem (Izyurov-Ch., ~11): Let Q2 C C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary 7g, and ~1,...,vm be some of the inner components
of OQ. If discrete domains Q7 approximate Q as § — 0, then

Esps[o(8)o(23) -
A=

where the limit is a conformal invariant of (Q2; a, b).

. é
01 g



Ratios of the spin correlations:

Theorem (Izyurov-Ch., ~11): Let Q2 C C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary 7g, and ~1,...,vm be some of the inner components
of OQ. If discrete domains Q7 approximate Q as § — 0, then

Esps[o(8)o(23) -
A=

where the limit is a conformal invariant of (Q2; a, b).

. §
01 g

Remark:

If vj = {w;} are just single points, then it does not matter, whether
7}5 are single faces approximating w; or small boundary components
shrinking to {w;} as 6 — O: our proof works in both cases.



Ratios of the spin correlations:

Theorem (Izyurov-Ch., ~11): Let Q2 C C be a bounded multiple
connected domain with two marked points a, b on the outer
boundary 7g, and ~1,...,vm be some of the inner components
of OQ. If discrete domains Q7 approximate Q as § — 0, then

S Ym)

Egip[0(11)0(3) - otm)]  y@)
Ei[o(1))o(13) .- o(vh)] b

where the limit is a conformal invariant of (Q2; a, b).

Corollary: For 2n + 2 boundary points the following is fulfilled:

B [008).cotm)] PECLOSR (. vm) ek

dp-++9n1

Eio().0(8)]  PE[GL ogjekcantt

where ($t = (§ are conformal invariants of (Q; a, b) independent of

single-point inner components. In particular, C(C*\{Wl’ W} = |b—a|.



Ratios of the spin correlations:
Exact computations in the half-plane:

In order to find ﬁ(ocgo(wl, ..Wm,) one should
solve the following “Interpolation problem™

Find a holomorphic spinor f defined on a double cover of
C4 \ {w1, .., wm} and branching around each of w; such that
(i) f(z)==41+0(z71) as z — oc;

(i) f(¢) € R for any ¢ € R;

(iii) £2 has simple poles at all w; and res ;—,,(f(2))? € iR...

Then, ﬂgoto(wlu A Wm) = f(O)



Ratios of the spin correlations:
Exact computations in the half-plane:

In order to find ﬁ(ocgo(wl, ..Wm,) one should
solve the following “Interpolation problem™

Find a holomorphic spinor f defined on a double cover of

C4 \ {w1, .., wm} and branching around each of w; such that

(i) f(z)==41+0(z71) as z — oc;

(i) f(¢) € R for any ¢ € R;

(iii) £2 has simple poles at all w; and res ;—,,(f(2))? € iR...
Then, 95 o(wi, .., wm) = £(0).

Remark. This problem can be solved explicitly for any m > 1.

The answer includes some m x m determinants, but do not involve

complicated analysis of the space of (system of) PDE'’s solutions
which is usual for classical CFT methods.
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Correlations:

e (basic fermionic observable): done;
e energy density field + boundary change operators: done;
e some ratios of spin correlations: done (arXiv:1105.5709);
e magnetization, spin-spin correlations: in progress
(taking the “source” point just nearby the branching,
one can express the logarithmic derivative of the
magnetization via spinor observables but some
rather involved technical problems appear;
ongoing project with C.Hongler and K.lzyurov).



Conformal invariance in the scaling limit. Summary.
Geometry:

e single interface: done;
e the whole loop ensemble: [7 in progress 7]

Correlations:

e (basic fermionic observable): done;

e energy density field + boundary change operators: done;

e some ratios of spin correlations: done (arXiv:1105.5709);
e magnetization, spin-spin correlations: in progress

THANK YOU!



