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1. Introduction

Statistical models on random lattices
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Statistical Models

On a random map of glven topology
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e Genus =g
e Number of "boundaries" (boundary = marked face with a

marked edge) =
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Statistical Models

add a statistical model

Example: Ising model.
Map, where each polygon carries a "spin" + or -.




Statistical Models

Example: O(n) model.
Map, where n—colored loops are drawn on triangles

N>
: O A s TS
?{@sﬁt@v«%&?&
2

LR

§ N ﬁ” WP
wgy‘g\.z%-;&» N
S

Other models: Potts model, Chain model, 6-vertex model,
3-color model have been solved,

There exist other statistical models which have not been
solved...
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Statistical Models

What we can do:

compute the number of configurations (or its generating
function), having

e given topology (given genus and number of marked faces)
e given number of k—gons

e given boundary configuration

and depending on the model:

e given total lenght of loops, or total number of + spins, or given
number of +|— edges, connectivity pattern of loops ending on
boundaries, ...
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2. Ising Model
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Statistical Models

Example: Ising model.
Map, where each polygon carries a "spin" + or -.




Statistical Models

Example: Ising model.
Map, where each polygon carries a "spin" + or -.

Marked faces can carry spins on their boundaries
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Ising Model

Rules for constructing an Ising model map
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Ising Model

Generating function for maps having + spins boundaries.

We define:
ng)(X1 ey X 1 t3, ey td; ?3, . ,?a; Ciy,Cy_, C__)
- Y0 Y oo
SGMgn #Aut( )
$1a(S) t”d(s) §a(S) ”d(s)
3 N 3 .. 8

X11+/1(3) - .X:]'f‘/n(s)
()™ (e )19 (¢y)(®)

v = # vertices, n.. = # edges separating spins ¢|¢’.
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Ising Model

Modified—Rules for constructing an Ising model map
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Ising Model

Rewriting generating function for maps having + spins

boundaries.
ngg)()ﬁ oo X t; t37 SERE) td; ?3> s 7?8; Cy+,Cq—, C**)
=20 Y
- #Aut(S)

SeMg,n(v)
(S S eSS

X11+/1(S) N .X,17+/n(8)

o2(8) g-n:+(8) pn-—(S)

Cit Ci_ _1_ a -c
Ci C__ ~\-c b
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Ising Model

++ T+

weight for +|+ edges: i
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Tutte equations

I K
Boundary of type &, ..., +,~, ..., —, with 0 < k < d:
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Solution of Tutte equations, planar case

Theorem: Solution for Wfo) (planar, 1 marked face):
Let

x) < ax — Z txd =1 — w9(x)
It satisfies a "rational” algebralc equation 0 = E(x, Y).

More explicitly, parametric solution x = x(z), Y(x) = y(z) given
by:

x(2) =~vz+ Z] ) oe]
y( ) vz T+ E ﬁj zl
where v, o, 3; are the unique solution of

ax(z) — Zf:3 tix(z) ' =cy(2)+Lz71 + O(z7?)
by(2) - 37 s ty(2y " = cx(2) + L 2+ O(2?)
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Solution of Tutte equations, planar, 2 boundaries

We define redefine the generating functions as functions of the
variable z:

Wz, z0) = WOx(z1),....,x(z)) X (z1)...x(zn)

dn20g,0 X' (21) X' (22)
(x(21) — x(22))?

Theorem: [Kazakov& al ~90’s] the 2-point function is universal:

1

0
Wé )(21,22) = m
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Solution of Tutte equations, all topologies

Theorem: [Chekhov-E-Orantin 05,06] All other "stable"
topologies (i.e. 2g — 2 + n > 0) are given by the "Topological
recursion":

21)1(20,21,...72,7) = ZZR_?;K(ZO’Z [ Whio ( ,C(2),21,...,2n)

+>° Z wgfﬁ#,(z,/)wgi;g(g(z)j)

where x’(a;) = 0 and x(¢(z)) = x(z), and the recursion kernel
is defined as

0
2oz (20,2')

WO(z2) - 9¢(2))

This recursion really "computes" the generating functions. It is
a recursion on the Euler characteristics xgn =2 — 2g — n.
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Topological recursion

Intuitive graphical explanation:

S

wgﬂ (z0,---,2n)
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Topological recursion

Intuitive graphical explanation:

~
~__

N >

wgﬂ (z0,---,2n)
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Topological recursion

Intuitive graphical explanation:
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~_
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Topological recursion

Intuitive graphical explanation:

N >

wgﬂ (z0,---,2n)
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Topological recursion

Intuitive graphical explanation:

N >

wgﬂ (z0,---,2n)
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Topological recursion

Intuitive graphical explanation:

o =

K(ZO7Z) ng_21)(z C( ) Z17"‘>Zn)

K(zy, z) = pair of pants without legs = cylinder with one side
pinched.
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Topological recursion

Intuitive graphical explanation:

S

wgﬂ (z0,---,2n)
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Topological recursion

Intuitive graphical explanation:

K(z0.2) w{2(2) w9, (C(2), 21, .., 2n)
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Topological recursion

Intuitive graphical explanation:

K(z0.2) w{2(2) w9, (C(2), 21, .., 2n)
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Topological recursion

Intuitive graphical explanation:

1 rz
2 Jz/=¢(z

WO(z) - O(¢(2))

cylinder, with all possible discs
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3. O(n) Model
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O(n) model

Random self avoiding loops of n possible colors are drawn of
the random lattice.

S
N
R

W%g)(X‘],...’Xn; t: t37"'7td; C;ﬂ)

] m(S) ()
_ Z v Z 3 -l
- (HAW(S) (I T(S)

SeMg,n(v
Cloop length n#loops
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O(n) model’s Tutte equations

"Tutte’s" equations:

Wip %55 Lo -

¥ L\ \7
d SR

allow to compute all W9,
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O(n) model solution

Theorem:
use the parametrization

x(2) = 5 +asn(zl)
The 1-point function is

- : d—1
WOy = X =8P Nty x| Ty 02— oylr)
1 2—n 2+n 9(2_%_%|7.)d71

where the coefficients a, o, A, are fixed by requiring
W1(°)(x) ~ t/x at large x, and by

n = —2cos (2r Z aj)
i
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Solution of Tutte equations, planar, 2 boundaries

We redefine the generating functions as functions of the
variable z:

W(zi,. . z0) = WOX(z1),....x(z2) X (21) ... X (20)

5,772(5970 X/(Z1)X/(22) X12 + X22 2X1 Xo
(x(21)?2 — x(22)?) 24+n  2-n

Theorem: the 2-point function is universal:

w021, 22) = pu(21 — 2)

= twisted Weierstrass function g, with a monodromy n.
It has a double pole at z; = 2.
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Solution of Tutte equations, all topologies

Theorem: [Borot-E 2009] All other "stable" topologies (i.e.
29 — 2+ n > 0) are given by the "Topological recursion™:

w,(~,i)1(207217'~72n) = ZZI{—E:; K(ZO7Z) |:w£]g+_21)(27<(z)7z17”'7ZI7)
h h 3
+3 > e ne” @)

where a; = 3, a = 137 and x(¢(2)) = x(z), and the recursion
kernel is defined as

12 ( )
) /— 207
Kz, 2) = 212=ctn) 2 (20:2)

0 0
i (2) - wﬁ (¢(2))
Same recursion as for the Ising model !
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O(n) model with boundary loops

There is a "sewing" formula (deduced from [Duplantier, Kostov
88]) to compute generating functions of O(n)model
configurations with loops ending on boundaries, with some
given link pattern (planar or not), given lenghts, and given

lengths for the pieces of boundary.

Question: planar case, one boundary: Temperley-Lieb alebra ?
Razumov-Stroganof conjecture
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4. Continuum limit and
Conformal Field theory

'ﬁé\v,vAmv
e TR KR
R A,
ROV N2
RS

N
<

What happens when the mesh size e — 0 ?
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Generalities about Continuum limits

Continuum limit:

polygons have an area €2, loop pieces have length . Choose
t, 13, 14, ... such that:

e average # of polygons — oo

e area — finite O(1)

e lenghts — finite O(1)

E(#triangles)g n = E(n3) = t3 ;; In W,sg)

therefore, choose t3, Iy, ... such that W,(,g) = non—analytical —
singularity !
Choose

t=t'4¢€

such that W9 is singular at t = t* = t..
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Generalities about Continuum limits

Continuum limit:

polygons have an area €2, loop pieces have length . Choose
t, 13, I4,... such that:

e average # of polygons — oo

e area — finite O(1)

e lenghts — finite O(1)

E(#triangles)g n = E(n3) = f3 9 In W,Sg)

ol
therefore, choose 13, Iy, ... such that W,(,g) = non—analytical —
singularity !
Choose

* 3 0
=1+ Cij e
i?j

such that W9 is singular at t = t* = t,.
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Singularities

Lety = W1(0)(x) ="spectral curve".

Vary t:
y

L~

N—
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Singularities

Lety = W1(0)(x) ="spectral curve".

Vary t:

N
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Singularities

Lety = W1(0)(x) ="spectral curve".

Vary t:
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Singularities

Lety = W1(°)(x) ="spectral curve".

Vary t:
w

y VX

Att=t*, y has a cusp y ~ x* where

n = —2Ccos un.
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Singularities

Lety = W1(0)(x) ="spectral curve".

Vary t:

Att— t* ~ t¢2, we rescale

X:X*+€a)"'( , y:y*_{_eﬂa-’}"/
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Critical spectral curve

The critical spectral curve is given by:
x=x*4+ax , y=y*+a"ywhere

X = —acoshy
7 =2k k,(m+)'.(u_k) (2cosh x)X cosh (1 — k)x
a~ (t— )i ~ =

p=2m+1+tv |, vel01] , N = —2C0S um = 2COoS V.

Statistical Models on random lattices
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Scaling limits

Theorem

3 lim a®e-2tMu—n Wi9D(ax, . ax,) = W (X1, ..., %)

and 09 (x1, ..., xn) = W9 (X, ..., %,) where X = — cosh ;,
are given by the "topological recursion”
[(’)i)1(X07X17"'7Xn) = ReS K(XO7 )|: /(’7g+2 )(27_27X17'-'7XI7)

S SRS DR ONEY )

h iel={x1,..xn}
where the recursion kernel is defined as

11z (0)(2
Y, 2 JzI=—2 0,2 )
K(20,2) = =0, 0

w3 (2) — @y (-2)

Bertrand Eynard, CERN, IPHT CEA Saclay Statistical Models on random lattices



Scaling limits and conformal field theory

Theorem

3 lim g@9=2tMe=n W9 (az, . ax,) = W9 (x,..., %)
Let © = p/q, (n = —2cos px). This theorem shows that
e rescaled generating functions counting "large" maps with an
O(n) or Ising model, tend to some "universal" functions @ﬁ,g).
e The exponents a(29-2+Mk—n together with
an~(t-— t*)ﬁ ~ eﬁ, are those given by the KPZ[1988]
formula = conformal field theory.
e the functions a)ﬁ,g) satisfy some differential equations, the
same as expected from Liouville CFT coupled to gravity.
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5. General properties of the
recursion
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Remark: we can apply this "topological recursion" algorithm to

any plane curve y = W1(°)(x) (spectral curve),
(related to a combinatorial problem or not).

The topological recursion defines some W,Sg) for any plane
curve, and we define:

Definition
Fg ="Symplectic Invariants” of a plane curve.

1
229 Res Wi() #(x)

i

where ¢/(x) = W9 (x) = y.
Separate definition exists for Fo and Fj... (utnotina 1 hourtaik)
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General properties (valid for any plane curve y(x)):
e Fg = symplectic invariant,
e Fg = (almost) modular form,

o Integrability: Zy = exp (3° N2729 F,)(1 + Non. Pert.) =
Tau-function

e Limits: Fy commute with limits: lim Fy(S)" =" F4(lim S).

This allows to study microscopic critical scaling regimes with
the same method.

Ex: easily recover Tracy-Widom universal law near boundaries
(y ~ Vx).

Ex: recover KdV (p, 2) reductions near critical points of order p
(i.e. y ~ xP/2), i.e. Painlevé | hierarchy.

e Many other nice properties, like special geometry
deformations (form-cycle duality), Virasoro or W algebra, ...etc.
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General properties (valid for any plane curve y(x)):
¢ F4 = symplectic invariant,
¢ Fg = (almost) modular form,

o Integrability: Zy = exp (>° N?~29 Fg)(1 + Non. Pert.) =
Tau-function

e Limits: Fyg commute with limits: lim Fy(S)" =" F4(lim S).

X X ~
t=t. t~te ~—

This allows to study microscopic critical scaling regimes with
the same method.
Ex: easily recover Tracy-Widom universal law near boundaries

~J

Bertrand Eynard, CERN, IPHT CEA Saclay Statistical Models on random lattices




General properties (valid for any plane curve y(x)):
e Fg = symplectic invariant,
e Fg = (almost) modular form,

o Integrability: Zy = exp (3° N2729 F,)(1 + Non. Pert.) =
Tau-function

e Limits: Fy commute with limits: lim Fy(S)" =" F4(lim S).

This allows to study microscopic critical scaling regimes with
the same method.

Ex: easily recover Tracy-Widom universal law near boundaries
(y ~ Vx).

Ex: recover KdV (p, 2) reductions near critical points of order p
(i.e. y ~ xP/2), i.e. Painlevé | hierarchy.

e Many other nice properties, like special geometry
deformations (form-cycle duality), Virasoro or W algebra, ...etc.

Bertrand Eynard, CERN, IPHT CEA Saclay Statistical Models on random lattices



6. Some applications
Beyond combinatorics of
maps
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Plane partitions

_ F#boxes
/= ZSDpartitions q ’
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O(1), large size: g — 1,

qsize

o7

Plane partitions
InZ

F#boxes
E3Dpartitions q )

> g(In q)?9—2 Fy.

e tutratan byt
Wil

Conjecture:

Fgq = Fy(Stieljes transt. of limit density along a vertical line) ?
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Plane partitions

© Z = 3pparitions 47" @ = O(1), large size: q — 1,
InZ =3 ,(Inq)%9-2 .
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Remark:

Stieljes transform of density = Legendre transform

of limit shape.

Conjecture:

Fq = Fy(Stieljes transt. of limit density along a vertical line) ?

Idea of a proof: Z=matrix integral, which implies that it satisfies
the topological recursion. Problem: show that W1(°) =
Kenyon-Okounkov-Sheffield curve (limit shape) ?
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Topological strings - Gromov-Witten

e Let X a 3D Calabi-Yau manifold with toric symmetry

o Gromov-Witten: Ny 4(X) = "# of conformal mappings of a
Riemann surface of genus g into X, with homology class d, and
passing through given points".

e Generating function: 7o = 3" 4 Ny o(X) QY.

e String theory: 7, = amplitude of a closed string of genus g in
target space X.

e Conjecture
Fg = Fg(mirror X)

Few cases proved so far:

- many low genus examples g =0,1,2,...,20 for various
choices of X, in particular X = SW SU(n) theories.
-toallgenus g =0,...,00 for X = C5.
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Conclusions and prospects

Conclusion

e We have solved Tutte’s equations for Ising model, O(n) model
on a random lattice, of any topology.

e We have computed the continuum limit of generating
functions — compatible with CFT. (exponents = KPZ).

¢ Extension to other combinatorial or algebraic problems
(Gromov-Witten theory, plane partitions, random matrices...).

Some open questions

e can we compute generating functions of configurations with
points at fixed distance (metrics properties) ? ldea: fix points as
marked faces of zero size, then count configurations with loops
of given lengths, between those marked faces...

¢ Prove that the topological recursion computes plane
partitions, Gromov-Witten invariants...
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