Algebraic and arithmetic area for m planar Brownian paths

LPTMS ORSAY CNRS/Université Paris-Sud

with Jean Desbois J. Stat. Mech. (2011) P05024 arXiv:1101.4135

about some recent results for the arithmetic area of m Brownian paths exact scaling $\log(m)$ when $m \to \infty \Rightarrow$ SLE??

link with Satya Majumdar talk: convex envelopp of *m* Brownian paths also algebraic area (easier, not discussed today)

Winding Sectors

points enclosed n times by the path (or -n times)

Comtet, Desbois, S.O. (1990)

random variable S_n = arithmetic area of the n-winding sectors inside a Brownian path of lentgh t

average $\langle S_n \rangle$ on all closed paths of length t

scaling properties of Brownian paths $\rightarrow \langle S_n \rangle$ scales like t

 $\langle S_n \rangle$ can be computed by path integral technics

$$\Rightarrow$$
 arithmetic area $\langle S \rangle = \sum_{n=-\infty}^{\infty} \langle S_n \rangle = \langle S_0 \rangle + 2 \sum_{n=1}^{\infty} \langle S_n \rangle$

here $\langle S_0 \rangle$ means inside

also
$$\langle S_n \rangle = \langle S_{-n} \rangle$$

density probability for Brownian path starting from \vec{r}_0 at time t=0 and reaching \vec{r} at time t

$$G(\vec{r}, t | \vec{r}_0, 0) = \frac{1}{2\pi t} e^{-\frac{(\vec{r} - \vec{r}_0)^2}{2t}} = \int_{\vec{r}(0) = \vec{r}_0}^{\vec{r}(t) = \vec{r}} D\vec{r} e^{-\int_0^t \frac{\vec{r}^2(\tau)}{2} d\tau}$$
close path $\vec{r} = \vec{r}_0$

density probability $P(\vec{r}_0, n, t)$ to wind n times around the origin after time t:

$$\theta = 2\pi n \rightarrow n = \frac{1}{2\pi} \int_0^t \dot{\theta}(\tau) d\tau$$

$$\Rightarrow$$
 constraint $\delta_{n,\frac{1}{2\pi}\int_0^t \dot{\Theta}(\tau)d\tau} = \int_0^1 e^{i2\pi\alpha(n-\frac{1}{2\pi}\int_0^t \dot{\Theta}(\tau)d\tau)}d\alpha$

in the path integral : $P(\vec{r}_0, n, t) = \int_0^1 d\alpha e^{i2\pi\alpha n} \int_{\vec{r}(0)=\vec{r}_0}^{\vec{r}(t)=\vec{r}_0} D\vec{r} e^{-\int_0^t (\frac{\vec{r}^2(\tau)}{2} + i\alpha\dot{\theta}(\tau))d\tau}$

in the action $\alpha\dot{\theta} = \vec{A}.\dot{\vec{r}} \Rightarrow \text{vector potential } \vec{A} = \alpha\vec{\partial}\theta$

 \Rightarrow quantum particle coupled to an Aharonov-Bohm flux $2\pi\alpha$ at the origin singular flux line pierced by an infinite magnetic field $\vec{B}=2\pi\alpha\delta(\vec{r})$

 $\langle S_n \rangle$ = integrate over flux position \Leftrightarrow integrate over \vec{r}_0

$$P(n,t) = \int d\vec{r}_o P(\vec{r}_0, n, t) = \int_0^1 d\alpha e^{i2\pi\alpha n} Z_t(\alpha)$$

P(n,t) = Fourier transform of $Z_t(\alpha)$

 $Z_t(\alpha)$ = Aharonov-Bohm partition function at inverse temperature t

 \Rightarrow the result :

$$n \neq 0$$
: $\langle S_n \rangle = \frac{t}{2\pi n^2}$

$$n=0:\langle S_0\rangle=\infty$$

normal: 0-winding sector = inside (finite) + outside (infinite) = infinite

 $\Rightarrow \langle S_0 \rangle$ inside is not known

note: for the algebraic area $A = \sum_{n=-\infty}^{\infty} nS_n$ same thing density probability $P(\vec{r}_0, A, t)$ to enclose the algebraic area A after time t:

$$A = \int_0^t \frac{\vec{r}(\tau) \times \dot{\vec{r}}(\tau)}{2} . \vec{k} d\tau$$

 \Rightarrow constraint $\delta(A - \int_0^t \frac{\vec{r}(\tau) \times \dot{\vec{r}}(\tau)}{2} . \vec{k} d\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iB(A - \int_0^t \frac{\vec{r}(\tau) \times \dot{\vec{r}}(\tau)}{2} . \vec{k} d\tau)} dB$

in the action $\frac{B\vec{k}\times\vec{r}}{2}.\dot{\vec{r}} = \vec{A}.\dot{\vec{r}}$

quantum particle coupled to a magnetic field \Rightarrow Landau partition function

Fourier transform → Levy's law

back to winding sectors:

1994 : W. Werner thesis "Sur l'ensemble des points autour desquels le mouvement Brownien plan tourne beaucoup"

$$n \to \infty : n^2 S_n \to \langle n^2 S_n \rangle = \frac{t}{2\pi}$$

+ recent progress on winding sectors (SLE) \rightarrow 0-winding sectors

2005 : Garban, Trujillo Ferreras "The expected area of the filled planar Brownian loop is $\pi/5$ "

total arithmetic area is known

$$\langle S \rangle = t \frac{\pi}{5} = \langle S_0 \rangle + 2 \sum_{n=1}^{\infty} \langle S_n \rangle$$
$$\Rightarrow \langle S_0 \rangle = t \frac{\pi}{30}$$

Now what about m independant Brownian paths starting from and coming back to the same point \vec{r}_0 ?

possible interest in ecology: animals looking for food may be approximated by random walkers

question: if you multiply the animal population by 10, should you multiply the size of the natural reserve by 10?

so far for m = 1 Brownian path

$$<\vec{r}_{0}|e^{-tH}|\vec{r}_{0}> = \int_{\vec{r}(0)=\vec{r}_{0}}^{\vec{r}(t)=\vec{r}_{0}} \mathcal{D}\vec{r}(\tau)e^{-\frac{1}{2}\int_{0}^{t}\dot{\vec{r}}^{2}(\tau)d\tau + i\alpha\int_{0}^{t}\dot{\theta}(\tau)d\tau} = \frac{1}{2\pi t}e^{-\frac{r_{0}^{2}}{t}}\sum_{k=-\infty}^{+\infty}I_{|k-\alpha|}\left(\frac{r_{0}^{2}}{t}\right)$$

integrate over initial position $\vec{r}_0 \Leftarrow \Rightarrow$ integrate over the flux line position \Rightarrow count the arithmetic areas S_n of the n-winding sectors

set
$$r_0^2/t = x \to \pi t \int_0^\infty dx \left(e^{-x} \sum_{k=-\infty}^{+\infty} I_{|k-\alpha|}(x) \right) = \sum_{n \neq 0} \langle S_n \rangle e^{i\alpha 2\pi n} + \langle S_0 \rangle = \infty$$

$$\alpha = 0 \to e^{-x} \sum_{k=-\infty}^{+\infty} I_{|k|}(x) = 1 \to \pi t \int_0^\infty dx = \sum_{n \neq 0} \langle S_n \rangle + \langle S_0 \rangle = \infty$$

$$\to \pi t \int_0^\infty dx \left(1 - e^{-x} \sum_{k=-\infty}^{+\infty} I_{|k-\alpha|}(x) \right) = \sum_{n \neq 0} \langle S_n \rangle \left(1 - e^{i\alpha 2\pi n} \right)$$

$$\int_0^\infty dx \left(\dots \right) = \alpha (1 - \alpha) \Rightarrow \langle S_n \rangle = -\pi t \int_0^1 d\alpha \, \alpha (1 - \alpha) \, e^{-i\alpha 2\pi n} = \frac{t}{2\pi n^2}$$

and
$$\sum_{n\neq 0} \langle S_n \rangle = \langle S - S_0 \rangle = \pi t \int_0^1 d\alpha \, \alpha (1 - \alpha) = \frac{\pi t}{6}$$

for *m* Brownian paths:

$$\pi t \int_0^\infty dx \left(1 - \left(e^{-x} \sum_{k=-\infty}^{+\infty} I_{|k-\alpha|}(x) \right)^m \right) = \sum_{n \neq 0} \langle S_n(m) \rangle \left(1 - e^{i\alpha 2\pi n} \right)$$

$$\Rightarrow \sum_{n\neq 0} \langle S_n(\mathbf{m}) \rangle = \langle S(\mathbf{m}) - S_0(\mathbf{m}) \rangle = \pi t \int_0^1 d\alpha \int_0^\infty dx \left(1 - (e^{-x} \sum_{k=-\infty}^{+\infty} I_{|k-\alpha|}(x))^{\mathbf{m}} \right)$$

evaluate when $m \to \infty$: one finds $\langle S(m) - S_0(m) \rangle \simeq \frac{\pi t}{2} \log(m)$

$$\langle S(m) - S_0(m) \rangle \leq \langle S(m) \rangle \Rightarrow \frac{\pi t}{2} \log(m) \leq \langle S(m) \rangle$$

use Comtet, Majumdar, Randon-Furling's result : $\langle S_{\text{convex}}(m) \rangle \simeq \frac{\pi t}{2} \log(m)$

$$\langle S(m) \rangle \leq \langle S_{\text{convex}}(m) \rangle \Rightarrow \langle S(m) \rangle \leq \frac{\pi t}{2} \log(m)$$

$$\frac{\pi t}{2}\log(m) \leq \langle S(m)\rangle \leq \frac{\pi t}{2}\log(m) \Rightarrow \langle S(m)\rangle \simeq \frac{\pi t}{2}\log(m)$$

it means that in the $m \to \infty$ limit:

 $\langle S_0(m) \rangle$ subleading

convex envelopp is filled

question: can this asymptotic result be obtained via SLE?

question: $\langle S_0(m) \rangle$?

