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Non-intersecting Brownian motions in 1d

N Brownian motions in one-dimension

ẋi(t) = ζi(t) , �ζi(t)ζj(t
�)� = δi,jδ(t − t

�)

x1(0) < x2(0) < ... < xN(0)

Non-intersecting condition

x1(t) < x2(t) < ... < xN(t) ,

∀t ≥ 0

0 t

x2(0)

x1(0)

x3(0)

x4(0)

xi(t)
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x1(0) < x2(0) < ... < xN(0)

Non-intersecting condition

x1(t) < x2(t) < ... < xN(t) ,

∀t ≥ 0

xi(t)

t
1

0

N = 4

watermelons "with a wall"
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Vicious walkers in physics
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Vicious walkers in physics

P. G. de Gennes, Soluble Models for fibrous structures with steric constraints (1968)

M. E. Fisher, Walks, Walls, Wetting and Melting (1984)

B. Duplantier Statistical Mechanics of Polymer Networks of Any Topology (1989)

J. W. Essam, A. J. Guthmann, Vicious walkers and directed polymer networks

in general dimensions (1995)

H. Spohn, M. Praehofer, P. L. Ferrari et al. Stochastic growth models

(2006)

...
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Extreme statistics of vicious walkers

10 ττM

M

xi(τ ) N = 4

x1(t) < x2(t) < ... < xN(t)

M = max
τ

[xN(τ), 0 ≤ τ ≤ 1]

xN(τM) = M

PN(M, τM) ≡ joint probability distribution function of M, τM

Q1 : Can one compute PN(M, τM) ?

Q2 : Asymptotics of PN(M, τM) for large N ?
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Non intersecting Brownian motions and RMT

τ

xi(t)

t
1

0

Joint probability of x1(τ), x2(τ), · · · , xN(τ) at fixed time τ

Pjoint(x1, x2, · · · , xN , τ) ∝ σ(τ)−N2
N�

i<j=1

(xi − xj)
2
e
− 1

σ2(τ)

�
N

i=1 x2
i

σ(τ) =
�

2τ(1 − τ)

The rescaled positions xi

σ(τ) are distributed like the eigenvalues of
random matrices of the Gaussian Unitary Ensemble (GUE, β = 2)
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Non intersecting Brownian motions and RMT

The rescaled positions xi

σ(τ) are distributed like the eigenvalues of
random matrices of Gaussian Unitary Ensemble (GUE, β = 2)

Mean density ρ(λ) of eigenvalues λ1,λ2, · · · ,λN for GUE

ρ(λ) =
1
N

N�

α=1

�δ(λ− λα)�

(2N)
1/2(2N)

1/2− 0

ρ (λ)

N−1/6

TRACY−WIDOM

WIGNER  SEMI−CIRCLE

λ

SEA
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Largest eigenvalue of random matrices from GUE

λmax = max
1≤i≤N

λi

=
√

2 N +
N− 1

6
√

2
χ2

Pr[χ2 ≤ ξ] = F2(ξ)

Tracy − Widom distribution (2N)
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Non intersecting Brownian motions and RMT

The rescaled positions xi

σ(τ) are distributed like the eigenvalues of
random matrices of Gaussian Unitary Ensemble (GUE, β = 2)

Largest eigenvalue of random matrices from GUE

λmax = max
1≤i≤N

λi

=
√

2 N +
N− 1

6
√

2
χ2

Pr[χ2 ≤ ξ] = F2(ξ)

Tracy − Widom distribution

F2(ξ) = exp
�
−
� ∞

ξ
(s − ξ)q2(s) ds

�

where q(s) satisfies Painlevé II

q
��(s) = s q(s) + q

3(s)

q(s) ∼ Ai(s) , s → ∞

C. Tracy, H. Widom ’94
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Watermelons in the limit of large N

Consequences for watermelons without wall for large N

xN(τ)�
2τ(1 − τ)

∼
√

2N +
N−1/6
√

2
χ2

Proba[χ2 ≤ ξ] = F2(ξ), Tracy-Widom distribution for β = 2

When N → ∞, xN(τ) reaches a circular shape

10 τ

xN(τ ) ∼ 2
√
N
�

τ (1− τ )

Fluctuations
xN(τ = 1/2)−

√
N ∼ N− 1

6
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Curved growing interface : the PNG droplet

Polynuclear Growth Model : Kardar Parisi Zhang universality class
t = t1 > 0t = 0 t = t2 > t1

seed

At large time t the profile becomes droplet-like

Fluctuations : KPZ
equation

∂t h(x , t) = ν∇2
h(x , t) +

λ

2
(∇h(x , t))2 + ζ(x , t)

�ζ(x , t)ζ(x �, t �)� = Dδ(x − x
�)δ(t − t

�)
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Curved growing interface : the PNG droplet

Fluctuations : focus on extreme statistics

h(x, t)

x
+t−t XM

M

KPZ scaling

M − 2t ∼ t
1/3

XM ∼ t
2/3

What is the joint distribution of M,XM ?
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Connection with the Directed Polymer (DPRM)

DP in random media with one free end (”point to line”)

x
XM

t

E(C) =
�

�i,j�∈C

�ij

• M ≡ −Energy of the optimal polymer
• XM ≡ Transverse coordinate of the optimal polymer
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Vicious walkers and PNG droplet

watermelons

10 τ

xN(τ ) ∼ 2
√
N
�

τ (1− τ )

PNG droplet

h(x, t)

h(x, t) ∼ 2t
�
1− (x/t)2

x
+t−t

xN ⇐⇒ h

τ ⇐⇒ x

N ⇐⇒ t
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Vicious walkers and PNG droplet

watermelons

10 τ

xN(τ ) ∼ 2
√
N
�

τ (1− τ )

PNG droplet

h(x, t)

h(x, t) ∼ 2t
�
1− (x/t)2

x
+t−t

h(ut
2
3 , t)− 2t

t
1
3

d
=

xN(
1
2 + u

2 N
− 1

3 )−
√

N

N
− 1

6

d
= A2(u)− u

2

Prähofer & Spohn ’00 A2(u) ≡ Airy2 process
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Vicious walkers and PNG droplet

Use this correspondence to study extreme statistics of PNG

10 ττM

M

xi(τ ) N = 4

h(x, t)

x
+t−t XM

M

HERE: exact computation of the distribution PN(M, τM) for N

vicious walkers
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Path integral approach

!

!
!

!

""#$%

!

& ' "

(

(

'

)

)

#

"

#

• PN(M, τM) = lim
�,η→0

1
ZN

M−η�

−∞

dy p<M(�, 1|y, τM)p<M(y, τM |�, 0)δ(yN − (M − η))

• p<M(·, ·|·, ·) : computed using a path integral for free fermions

G.S, S.N. Majumdar, A. Comtet, J. Randon-Furling ’08
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Exact results for N vicious walkers

Joint distribution of M and τM J. Rambeau, G.S, EPL ’10, PRE ’11

PN(M, τM) = BN [det D] t
U(τM)D

−1
U(1 − τM)

Di,j = (−1)i−1
Hi+j−2(0)− e

−2M2
Hi+j−2(

√
2M)

Ui(τM) = τM
− i+1

2 Hi

�
M/

�
2τM

�
e
− M

2
2τ

M

Hi(·) ≡ Hermite polynomials
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− i+1

2 Hi

�
M/

�
2τM

�
e
− M

2
2τ

M

Hi(·) ≡ Hermite polynomials

Marginal distribution of τM

N = 2 : P2(τM) = 4
�

1 − 1 + 10τM(1 − τM)

(1 + 4τM(1 − τM))5/2

�
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Maximal height of watermelons with a wall

Cumulative distribution of the maximal height

FN(M) = Pr [xN(τ) ≤ M , ∀ 0 ≤ τ ≤ 1]

=

� 1

0
dτM

� M

0
dx PN(x , τM)

.

.

.

.HN
x

0 1

τ

M

What about the asymptotic behavior of FN(M) for N → ∞ ?
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=

� 1

0
dτM

� M

0
dx PN(x , τM)

.

.

.

.HN
x

0 1

τ

M

Path integral for free fermions
G. S, S. N. Majumdar, A. Comtet, J. Randon-Furling ’08

FN(M) =
AN

M2N2+N

+∞�

n1,··· ,nN=0

N�

i=1

n
2
i

�

1≤j<k≤N

(n2
j
− n

2
k
)2

e
− π2

2M2
�

N

i=1 n2
i

What about the asymptotic behavior of FN(M) for N → ∞ ?
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Partition function of Yang-Mills theory in 2d

Partition function of Yang-Mills theory on a 2d manifold M with a gauge
group G, described by a gauge field Aµ(x) ≡ Aa

µ(x)T
a

ZM =

�
[DAµ]e

− 1
4λ2

�
Tr[Fµν

Fµν ]
√

gd
2
x

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν ]

Ex: G ≡ SU(2) : electro-weak interacto, G ≡ SU(3) : chromodynamics
Regularization on the lattice

ZM =

� �

L

dUL

�

plaquettes

ZP [UP ]

UP =
�

L ∈ plaquette

UL

U

U1

2

U
4

U
5

U
3

P
1

P
2
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Heat-kernel action

ZM =

� �

L

dUL

�

plaquettes

ZP [UP ]

UP =
�

L∈plaquette

UL

U

U1

2

U
4

U
5

U
3

P
1

P
2

A common choice : Wilson’s action Wilson’74

ZP(UP) = exp
�
bN Tr(UP + U

†
P
)
�

Alternative choice : invariance under decimation ⇒ Migdal’s recursion
relation�

dU3 ZP1(U1U2U3)ZP2(U4U5U
†
3) = ZP1+P2(U1U2U4U5)

ZP(UP) =
�

R

dRχR(UP) exp
�
−AP

2N
C2(R)

�
Migdal’75, Rusakov’90
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Partition function of Yang-Mills theory on the
2d-sphere

Partition functo on M, of genus g, computed with the heat-kernel action

ZM =
�

R

d
2−2g

R
exp

�
− A

2N
C2(R)

�

Irreducible representations R of G are labelled by the lengths of the
Young diagrams:

• If G = U(N)

ZM = cN e
−A

N
2−1
24

∞�

n1,...,nN=0

�

i<j

(ni − nj)
2
e
− A

2N
)
�

N

j=1 n
2
j

• If G = Sp(2N)

ZM = ĉN e
A (N+ 1

2 )
N+1
12

∞�

n1,...,nN=0




N�

j=1

n
2
j




�

i<j

(n2
i − n

2
j )

2
e
− A

4N

�
N

j=1 n
2
j
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Partition function of Yang-Mills theory on the
2d-sphere

Partition functo on the sphere computed with the heat-kernel action

ZM =
�

R
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Irreducible representations R of G are labelled by the lengths of the
Young diagrams:
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Correspondence between YM2 on the sphere and
watermelons

Partition function of YM2 on the sphere with gauge group Sp(2N)

ZM = Z(A; Sp(2N))

Z(A; Sp(2N)) = ĉN e
A (N+ 1

2 )
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Cumulative distribution of the maximal height of watermelons with a wall

FN(M) =
AN

M2N2+N
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2
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2
e
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�

N

j=1 n
2
j

∝ Z
�

A =
2π2N

M2 ; Sp(2N)

�
P. J. Forrester, S. N. Majumdar, G. S. ’11
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Large N limit of YM2 and consequences for FN(M)

Weak-strong coupling transition in YM2 Durhuus-Olesen ’81,

Douglas-Kazakov ’93

N

right tail
coupling
weak

left tail

coupling
strong

TW critical region

π2 AM

M 2 = 2π2N
A

√
2N

FN(M)
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Large N limit of YM2 and consequences for FN(M)

In the critical regime, "double-scaling limit", the method of orthogonal
polynomials (Gross-Matytsin ’94, Crescimanno-Naculich-Schnitzer ’96) shows

d2

dt2 log FN

�√
2N(1 + t/(27/3

N
2/3))

�
= −1

2

�
q

2(t) + q
�(t)

�

q
��(t) = 2q

3(t) + t q(t) , q(t) ∼ Ai(t) , t → ∞
i.e.

FN(M) → F1

�
211/6

N
1/6

���M −
√

2N

���
�

F1(t) = exp
�
− 1

2

� ∞

t

�
(s − t) q

2(s)− q(s)
�

ds

�

≡ Tracy-Widom distribution for β = 1

P. J. Forrester, S. N. Majumdar, G.S. ’11

Also interesting results for large deviations
P. J. Forrester, S. N. Majumdar, G.S. ’11
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What about other gauge groups ?

Ratio of reunion probabilities for N vicious walkers on the segment [0,M]
with absorbing boundary conditions

�1 �1

�2

�3

�4

�2

�3

�4

0 1

M
FN(M) = Proba[xN(τ) ≤ M, ∀τ ∈ [0, 1]]

FN(M) =
RM(1)
R∞(1)

RM(1) ≡ proba. that N walkers
return to their initial positions at
τ = 1

Related to YM2 on the sphere with gauge group Sp(2N)

FN(M) ∝ Z
�

A =
2π2N

M2 ; Sp(2N)

�
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What about other gauge groups ?

Ratio of reunion probabilities for N vicious walkers on the segment [0,M]
with periodic boundary conditions

�1 �1

�2

�3

�4

�2

�3

�4

0 1

M
FN(M) = Proba[xN(τ) ≤ M, ∀τ ∈ [0, 1]]

FN(M) =
RM(1)
R∞(1)

RM(1) ≡ proba. that N walkers
return to their initial positions at
τ = 1

Related to YM2 on the sphere with gauge group U(N)

FN(M) ∝ Z
�

A =
4π2N

M2 ;U(N)

�
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What about other gauge groups ?

Ratio of reunion probabilities for N vicious walkers on the segment [0,M]
with reflecting boundary conditions

�1 �1

�2

�3

�4

�2

�3

�4

0 1

M
FN(M) = Proba[xN(τ) ≤ M, ∀τ ∈ [0, 1]]

FN(M) =
RM(1)
R∞(1)

RM(1) ≡ proba. that N walkers
return to their initial positions at
τ = 1

Related to YM2 on the sphere with gauge group SO(2N)

FN(M) ∝ Z
�

A =
4π2N

M2 ; SO(2N)

�
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Consequences for curved stochastic growth

h(x, t)

x
+t−t XM

M

Distribution of the height field h(0, t) Prähofer & Spohn ’00

lim
t→∞

P

�
h(0, t)− 2t

t1/3 ≤ s

�
= F2(s)

F2(s) ≡ Tracy − Widom distribution for β = 2
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Consequences for curved stochastic growth

h(x, t)

x
+t−t XM

M

Maximum M ≡ max−t≤x≤t h(x , t) P. Forrester, S. N. Majumdar, G. S. NPB ’11

lim
t→∞

P

�
M − 2t

t1/3 ≤ s

�
= F1(s)

F1(s) ≡ Tracy − Widom distribution for β = 1
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Consequences for curved stochastic growth

Maximum M ≡ max−t≤x≤t h(x , t) P. Forrester, S. N. Majumdar, G. S. NPB ’11

lim
t→∞

P

�
M − 2t

t1/3 ≤ s

�
= F1(s)

F1(s) ≡ Tracy − Widom distribution for β = 1

see also
Krug et al. ’92, Johansson ’03 (indirect proof),

G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716

G. Schehr (LPT Orsay) EVS of vicious walkers: from RMT to YM2 Moscow, September 20 31 / 35



Experiments on nematic liquid crystals

K. A. Takeuchi, M. Sano, Phys. Rev. Lett. 104, 230601 (2010)
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Courtesy of K. Takeuchi
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Outline

1 Vicious walkers and random matrices

2 Connection with stochastic growth models

3 Exact computation using path integral approach
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Conclusion

Exact results for extreme statistics of N vicious walkers

Relation between vicious walkers and Yang-Mills theory on the
sphere

The maximal height is given, for N → ∞, by the Tracy-Widom
distribution β = 1

Relation between boundary conditions in vicious walkers problem
and gauge group in the YM2

Any deep reason behind this ?
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Perspectives

! )(

1 !
M
!0

x

M PN(M, τM) ≡ joint distribution of
the maximum M and its position τM

J. Rambeau, G. S. ’11

PN(M, τM) =
AN,E

MN(2N+1)+3

�

n,n�
N

�
(−1)nN+n

�
N n

2
N n

�
N

2

�
N−1�

i=1

n
2
i

�
e
− π2

2M2

N−1�
i=1

n
2
i

∆N(n
2
1, . . . , n

2
N−1, n

2
N) ∆N(n

2
1, . . . , n

2
N−1, n

�
N

2
)e− π2

2M2 [(1−τM )n�
N

2+τM n
2
N ]
�

What about the large N limit of PN(M, τM) ?
see recent results by G. M. Flores, J. Quastel, D. Remenik, arXiv:1106.2716
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