Andrea Zoia

œ

CEA/Saclay DEN/DANS/DM2S/SERMA/LTSD

Residence time and collision number statistics: a Feynman-Kac approach

International Conference
"Random Processes, Conformal Field Theory
and Integrable Systems"

September 19 - 23, 2011 Poncelet Laboratory, Moscow, Russia

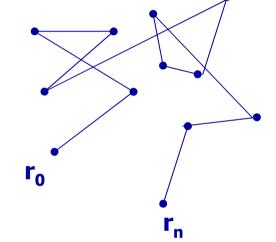
Outline

- Introduction
- Stochastic transport: random flights
 - Collision number statistics and diffusion limit
 - □ Exponential flights and residence time statistics
- Conclusions

 Foreword: joint work with Eric Dumonteil and Alain Mazzolo at LTSD laboratory, CEA/Saclay

Stochastic transport

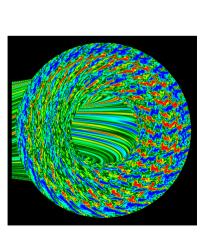
- Random flights (Pearson's random walk, 1905)
 - Straight line 'flights' (random length)
 - Collisions
 - Scattered with probability p
 - Absorbed with probability 1-p



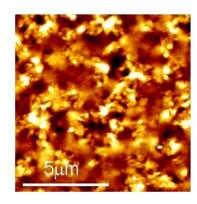
- **Renewal** process with reorientation and reward
- Deceivingly simple: many open questions...

Examples of random flights

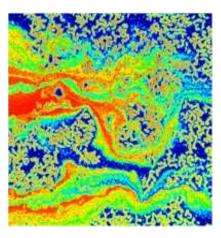
Neutron/photon flux



Plasmas



Charge transport



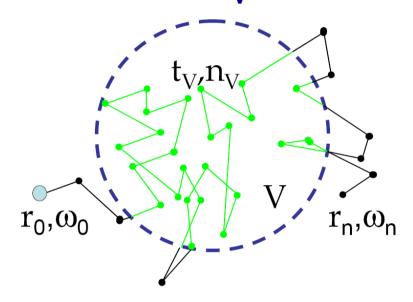
Porous media

Search strategies

Finance

General framework

lacktriangle Collision number lacktriangle and residence time lacktriangle in a region lacktriangle

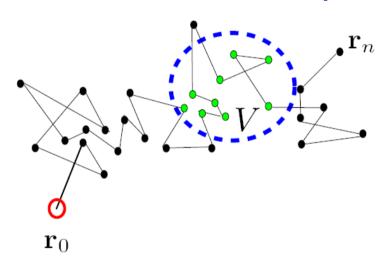


- Mean: average particle concentration in V
- Variance: uncertainty

- Applications in reactor physics: neutrons or photons
 - □ power deposition and/or atomic displacements in a volume
 - \Box theory of Monte Carlo estimators: "collision" ($\mathbf{n_V}$) and "track length" ($\mathbf{t_V}$)
- **Hypotheses**: iid flights, single speed, isotropic scattering

Collision statistics

Statistics of collision number n_v ≤ n in a volume V



■ Distribution: $\mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0)$

■ Key of our analysis: **moments**

$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \sum_{n_{\mathcal{V}}=1}^{+\infty} n_{\mathcal{V}}^m \mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0)$$

 \bullet d-dimensional setup (dependence on $\mathbf{r_0}$)

Key ingredients

- Isotropic point source: $\delta(\mathbf{r}-\mathbf{r_0})$
- The **propagator** $\Psi(\mathbf{r}, \mathbf{n}|\mathbf{r_0})$ is the probability density of finding a particle in \mathbf{r} entering the n-th collision, starting from $\mathbf{r_0}(*)$
- Let $\pi(\mathbf{r},\mathbf{r'})$ be the probability density of performing a **flight** from $\mathbf{r'}$ to \mathbf{r}
- Define the **transport** operator $\pi[f](\mathbf{r}) = \int_{\mathcal{V}} \pi(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') d\mathbf{r}'$
- If we define the **n**-iterated transport operator

$$\pi^{n}[f](\mathbf{r}) = \int_{\mathcal{V}} \int_{\mathcal{V}} \pi(\mathbf{r}, \mathbf{r}_{n}) ... \pi(\mathbf{r}_{2}, \mathbf{r}_{1}) f(\mathbf{r}_{1}) d\mathbf{r}_{1} ... d\mathbf{r}_{n}$$

it follows then $\Psi(\mathbf{r}, n|\mathbf{r}_0) = p^{n-1}\pi^n[\delta](\mathbf{r}, \mathbf{r}_0)$

M

Collision statistics

■ Define the **collision density** $\Psi(\mathbf{r}|\mathbf{r_0})$

$$\Psi(\mathbf{r}|\mathbf{r}_0) = \lim_{N \to \infty} \sum_{n=1}^{N} \Psi(\mathbf{r}, n|\mathbf{r}_0)$$
 Equilibrium (limit) distribution

Then we have the moments

$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \sum_{k=1}^m s_{m,k} p^k \mathcal{C}_k(\mathbf{r}_0)$$

Kac integrals
$$\mathcal{C}_k(\mathbf{r}_0) = k! \int_{\mathcal{V}} d\mathbf{r}_k ... \int_{\mathcal{V}} d\mathbf{r}_1 \Psi(\mathbf{r}_k | \mathbf{r}_{k-1}) ... \Psi(\mathbf{r}_1 | \mathbf{r}_0)$$

Stirling numbers of the second kind $s_{m,k} = \frac{1}{k!} \sum_{i=0} (-1)^i \binom{\kappa}{i} (k-i)^m$

■ Link between $\Psi_{\mathbf{V}}$ and $\mathbf{n}_{\mathbf{V}}$

Applications

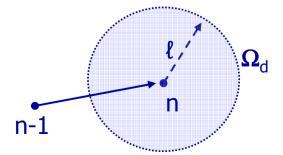
Moment formula

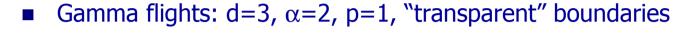
$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \sum_{k=1}^m s_{m,k} p^k \mathcal{C}_k(\mathbf{r}_0)$$

- **Numerical** integration for arbitrary $\pi(\mathbf{r},\mathbf{r}')$
- Analytical calculations for simple geometries and propagators
- Example. d-dimensional "Gamma flights" in spherical geometries: random flights with Gamma-distributed lengths $\ell^{\alpha-1}$ exp($-\ell$)/ $\Gamma(\alpha)$

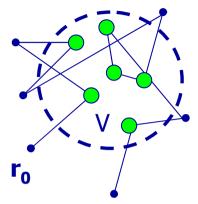
$$\pi(\mathbf{r}, \mathbf{r}') = \pi(\ell = |\mathbf{r} - \mathbf{r}'|)$$

$$\pi(\ell) = \ell^{\alpha - d} \exp(-\ell) / \Omega_d \Gamma(\alpha), \ \alpha > 0$$





$$\pi(\ell) = \ell^{\alpha-d} \exp(-\ell)/\Omega_d \Gamma(\alpha), \ \alpha > 0$$



rn

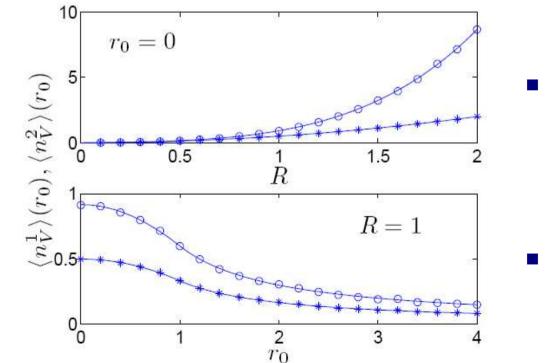
- V is a sphere with radius **R**; walks can start inside or outside
- lacksquare Collision density $\Psi(\mathbf{r}|\mathbf{r}_0) = rac{1}{4\pi |\mathbf{r} \mathbf{r}_0|}$

■ Moments:
$$\langle n_{\mathcal{V}}^1 \rangle (\mathbf{r}_0) = \begin{cases} \frac{3R^2 - r_0^2}{6} & r_0 < R \\ \frac{R^3}{3r_0} & r_0 \ge R \end{cases}$$

and

$$\langle n_{\mathcal{V}}^{2} \rangle(\mathbf{r}_{0}) = \begin{cases} \frac{25R^{4} - 10R^{2}r_{0}^{2} + r_{0}^{4}}{60} + \langle n_{\mathcal{V}}^{1} \rangle(\mathbf{r}_{0}) & r_{0} < R\\ \frac{4}{15} \frac{R^{5}}{r_{0}} + \langle n_{\mathcal{V}}^{1} \rangle(\mathbf{r}_{0}) & r_{0} \ge R \end{cases}$$

- Gamma flights: d=3, $\alpha=2$, p=1
- Monte Carlo simulation (symbols), analytical curves (solid lines)



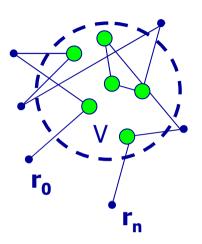
■ Fixed r₀, varying R

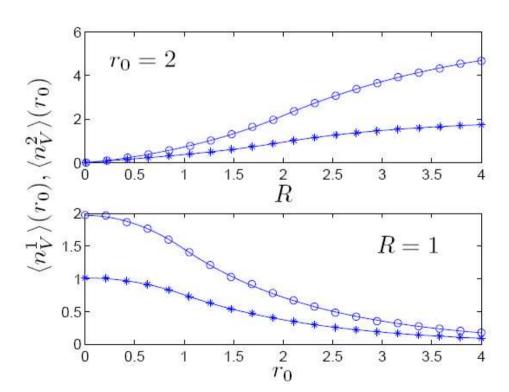
■ Fixed R, varying r₀

■ Gamma flights: d=1, $\alpha=1$, p=0.5, transparent boundaries

$$\pi(\ell) = \ell^{1-d} \exp(-\ell)/\Omega_d$$

Exponential flights: α =1





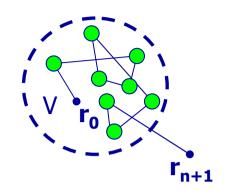
- V is a "sphere" with radius R;walks can start inside or outside
- Collision density

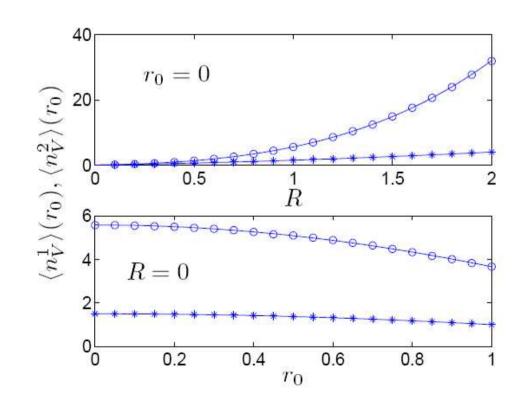
$$\Psi(\mathbf{r}|\mathbf{r}_0) = \frac{e^{-\sqrt{1-p}|\mathbf{r}-\mathbf{r}_0|}}{2\sqrt{1-p}}$$

Omitted formulas

Gamma flights: d=1, $\alpha=1$, p=1, **leakage** boundaries

$$\pi(\ell) = \ell^{1-d} \exp(-\ell)/\Omega_d$$
 Exponential flights: $\alpha=1$





Collision density

$$\Psi(\mathbf{r}|\mathbf{r}_0) = \frac{|r_0\mathbf{r}/r_e - r_e\mathbf{r}_0/r_0| - |\mathbf{r} - \mathbf{r}_0|}{2}$$
$$r_e = R + 1$$

- Method of images
- **Omitted formulas**

Ŋ.

Why? Proof (1)

- Formal relation $\mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0) = \int_{\mathcal{V}} d\mathbf{r} \Psi(\mathbf{r}, n_{\mathcal{V}}|\mathbf{r}_0) \int_{\mathcal{V}} d\mathbf{r} \Psi(\mathbf{r}, n_{\mathcal{V}} + 1|\mathbf{r}_0)$
- Survival probability
- $\qquad \text{Recall that} \qquad \langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \sum_{n_{\mathcal{V}}=1}^{+\infty} n_{\mathcal{V}}^m \mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0)$
- Then, from $\Psi(\mathbf{r}, n|\mathbf{r}_0) = p^{n-1}\pi^n[\delta](\mathbf{r}, \mathbf{r}_0)$

we have
$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \int_{\mathcal{V}} d\mathbf{r} \operatorname{Li}_{-m}(p\pi) (1 - p\pi) [\delta](\mathbf{r}, \mathbf{r}_0)$$

where
$$\operatorname{Li}_s(x) = \sum_{k=1}^{\infty} x^k/k^s$$
 Polylogarithm (Jonquière function)

Rational function:
$$\operatorname{Li}_{-m}(x) = \sum_{k=0}^{m} k! s_{m+1,k+1} \left(\frac{x}{1-x}\right)^{k+1}$$

for non-negative integer -m

• Proof (2)

- $\qquad \text{Define the operator} \quad \Psi[f](\mathbf{r}) = \int_{\mathcal{V}} \Psi(\mathbf{r}|\mathbf{r}') f(\mathbf{r}') d\mathbf{r}'$
- Apply formal **Neumann** series $\sum_{n=1}^{\infty} p^{n-1} \pi^n[f](\mathbf{r}) = \frac{\pi}{1 p\pi}[f](\mathbf{r})$
- $\qquad \text{Then} \qquad \Psi[f](\mathbf{r}) = \frac{\pi}{1 p\pi}[f](\mathbf{r}) \qquad \text{and} \qquad \Psi(\mathbf{r}|\mathbf{r}_0) = \Psi[\delta](\mathbf{r},\mathbf{r}_0)$
- From $\text{Li}_{-m}(x) = \sum_{k=0}^{m} k! s_{m+1,k+1} \left(\frac{x}{1-x}\right)^{k+1}$

we can rewrite $\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \int_{\mathcal{V}} d\mathbf{r} \operatorname{Li}_{-m}(p\pi) (1 - p\pi) [\delta](\mathbf{r}, \mathbf{r}_0)$

as
$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \int_{\mathcal{V}} d\mathbf{r} \sum_{k=1}^m k! s_{m,k} p^k \Psi^k[\delta](\mathbf{r}, \mathbf{r}_0)$$

Ŋ.

Proof (3)

- We have $\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \int_{\mathcal{V}} d\mathbf{r} \sum_{k=1}^m k! s_{m,k} p^k \Psi^k[\delta](\mathbf{r}, \mathbf{r}_0)$
- We can identify $C_k(\mathbf{r}_0) = k! \int_{\mathcal{V}} d\mathbf{r}_k ... \int_{\mathcal{V}} d\mathbf{r}_1 \Psi(\mathbf{r}_k | \mathbf{r}_{k-1}) ... \Psi(\mathbf{r}_1 | \mathbf{r}_0)$

with
$$C_k(\mathbf{r}_0) = k! \int_{\mathcal{V}} d\mathbf{r} \Psi^k[\delta](\mathbf{r}, \mathbf{r}_0)$$

- It follows finally $\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \sum_{k=1}^m s_{m,k} p^k \mathcal{C}_k(\mathbf{r}_0)$
- Remark the **recursion** property $C_{k+1}(\mathbf{r}_0) = (k+1)\Psi[C_k](\mathbf{r}_0)$

M

Large n_v behavior

- Discrete moment generating function $G(z|r_0)$
- Relation to the distribution $\mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0) = \frac{1}{n_{\mathcal{V}}!} \frac{\partial^{n_{\mathcal{V}}}}{\partial z^{n_{\mathcal{V}}}} G(\log(z)|\mathbf{r}_0)|_{z=0}$
- $\qquad \text{Moments expansion} \quad G(z|\mathbf{r}_0) = \sum_{m=0}^{\infty} \langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) \frac{z^m}{m!}$

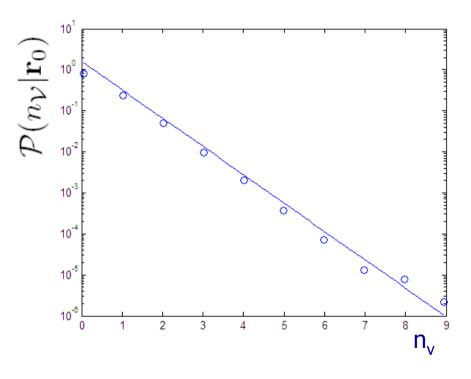
$$G(z|\mathbf{r}_0) = \sum_{k=0}^{\infty} \int_{\mathcal{V}} d\mathbf{r} e^{kz} (p\pi)^k (1-p\pi) [\delta](\mathbf{r},\mathbf{r}_0) = \frac{1}{p} \int_{\mathcal{V}} d\mathbf{r} \frac{1-p\pi}{1-e^z p\pi} [\delta](\mathbf{r},\mathbf{r}_0)$$

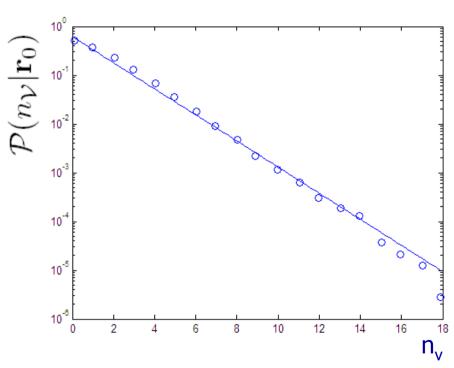
- It follows the **small-z** behavior $G(z|\mathbf{r}_0) \simeq 1 + z \int_{\mathcal{V}} d\mathbf{r} \Psi[\delta](\mathbf{r},\mathbf{r}_0)$
- Hence from **Tauberian** theorems $\mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0) \simeq e^{-n_{\mathcal{V}}/\langle n_{\mathcal{V}}^1 \rangle (\mathbf{r}_0)}$

Simulations

■ **Exponential** decay of the distribution: simulations (circles) and log-lin fit (solid line)

$$\mathcal{P}(n_{\mathcal{V}}|\mathbf{r}_0) \simeq e^{-n_{\mathcal{V}}/\langle n_{\mathcal{V}}^1 \rangle(\mathbf{r}_0)}$$





■ 3d Gamma flights (α =2)

3d exponential flights

M

Discussion: existence of $C_k(\mathbf{r}_0)$

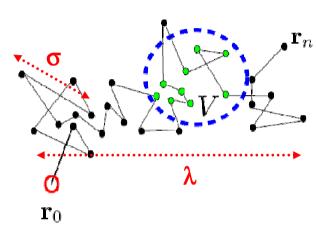
- Convolution Kac integrals $C_k(\mathbf{r}_0) = k! \int_{\mathcal{V}} d\mathbf{r}_k ... \int_{\mathcal{V}} d\mathbf{r}_1 \Psi(\mathbf{r}_k | \mathbf{r}_{k-1}) ... \Psi(\mathbf{r}_1 | \mathbf{r}_0)$
- Recursion $C_{k+1}(\mathbf{r}_0) = (k+1)\Psi[C_k](\mathbf{r}_0)$
- Hence the existence of $C_k(\mathbf{r}_0)$ depends on $\Psi(\mathbf{r}|\mathbf{r}_0) = \lim_{N\to\infty} \sum_{n=1}^N \Psi(\mathbf{r},n|\mathbf{r}_0)$
- $\Psi(\mathbf{r}|\mathbf{r}_0)$ depends on boundary conditions, p, and dimension **d**
- Worst case (transparent boundaries and p=1): **d>2**
 - □ **Recurrent** and **transient** walks: Polya's theorem
- lacksquare Remark that we have $\langle n_{\mathcal{V}}^1 \rangle(\mathbf{r}_0) = \int_{\mathcal{V}} d\mathbf{r} \Psi(\mathbf{r}|\mathbf{r}_0)$

Use and abuse of the formula

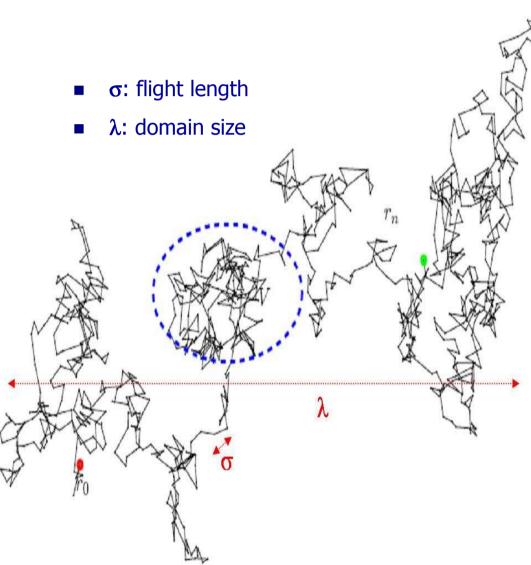
$$\langle n_{\mathcal{V}}^{m} \rangle(\mathbf{r}_{0}) = \frac{1}{p} \sum_{k=1}^{m} s_{m,k} p^{k} \mathcal{C}_{k}(\mathbf{r}_{0}) + \mathcal{C}_{k}(\mathbf{r}_{0}) = k! \int_{\mathcal{V}} d\mathbf{r}_{k} ... \int_{\mathcal{V}} d\mathbf{r}_{1} \Psi(\mathbf{r}_{k} | \mathbf{r}_{k-1}) ... \Psi(\mathbf{r}_{1} | \mathbf{r}_{0})$$

- **Direct** approach: from equilibrium distribution to moments
 - Knowledge of the process allows assessing collision statistics
 - ☐ Example: neutron or photon transport
- **Inverse** approach: from moments to equilibrium distribution
 - □ Knowledge of the moments allows assessing features of underlying process
 - □ Example: biology or economics
- Warning: it is a difficult problem!

Diffusion limit



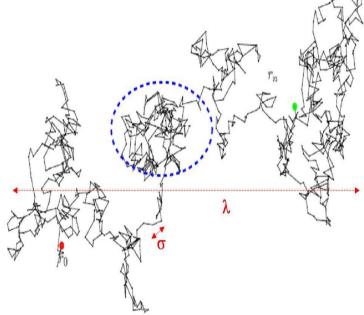
■ Choose $\sigma \ll \lambda$



Brownian functionals

■ Central Limit Theorem: when $\sigma \ll \lambda$, every "reasonable" random flight \mathbf{r}_n converges to **Brownian motion B**_n

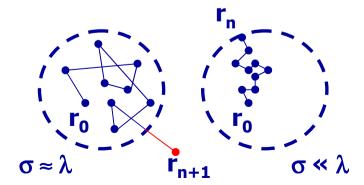
- Analogously, $F[\mathbf{r}_n]$ converges to $F[\mathbf{B}_n]$
- What happens to $F = \langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) \rightarrow ?$
- When $\sigma \ll \lambda$, n_V explodes



Ŋ.

Diffusion limit (1)

- Finite speed v (neglect absorption)
- Isotropy: $\pi(\mathbf{r}, \mathbf{r}') = \pi(\ell = |\mathbf{r} \mathbf{r}'|)$
- Identically distributed **flight times** $t_i = |\mathbf{r}_i \mathbf{r}_{i-1}|/v$ $w(t_i) = \Omega_d \int \ell^{d-1} \pi(\ell) \delta(t_i \ell/v) d\ell$
- **Diffusion limit**: small σ , which implies small $\tau = \langle t_i \rangle$, and $n_{\mathcal{V}} \to \infty$ We impose a finite ratio $D = \sigma^2/\tau$
- Residence time in V: $t_{\mathcal{V}} = \sum_{i=1}^{n_{\mathcal{V}}} t_i$
- **■** Effects of **boundary conditions**



Diffusion limit (2)

- Introduce the distribution $Q(t_{\mathcal{V}}|\mathbf{r}_0)$ of $t_{\mathcal{V}} = \sum_{i=1}^{n_{\mathcal{V}}} t_i$
- In **Laplace** space the distribution of the sum is

$$Q(s|\mathbf{r}_0) = \int \exp(-st_{\mathcal{V}})Q(t_{\mathcal{V}}|\mathbf{r}_0)dt_{\mathcal{V}} = w(s)^{n_{\mathcal{V}}}$$

- For any "reasonable" w(t), we have $w(s) \simeq 1 s\tau$ when $\tau \to 0$
- Then, $\mathcal{Q}(s|\mathbf{r}_0) \simeq e^{-n_{\mathcal{V}}s\tau}$ which implies $\mathcal{Q}(t_{\mathcal{V}}|\mathbf{r}_0) \simeq \delta(t_{\mathcal{V}}-n_{\mathcal{V}}\tau)$
- \blacksquare Hence, $\langle t_{\mathcal{V}}^m \rangle(\mathbf{r}_0) \simeq \tau^m \langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0)$

Diffusion limit (3)

• We can combine $\langle t_{\mathcal{V}}^m \rangle(\mathbf{r}_0) \simeq \tau^m \langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0)$

with
$$\langle n_{\mathcal{V}}^m \rangle(\mathbf{r}_0) = \frac{1}{p} \sum_{k=1}^m s_{m,k} p^k \mathcal{C}_k(\mathbf{r}_0)$$
 (p=1)

- Rescale **r** by σ : each term in the sum gives σ^{-2k}
- Only the leading order m survives
- We finally obtain the celebrated Kac formula
 which is known for Brownian motion

$$\langle t_{\mathcal{V}}^m \rangle(\mathbf{r}_0) \simeq \frac{\mathcal{C}_m(\mathbf{r}_0)}{D^m}$$

Moreover, we have the recursion property

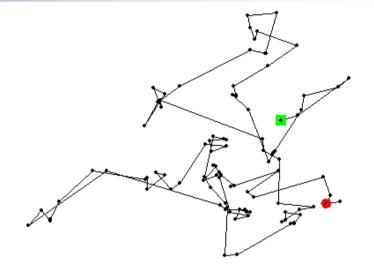
$$D\langle t_{\mathcal{V}}^{m+1}\rangle(\mathbf{r}_0) = (m+1)\Psi[\langle t_{\mathcal{V}}^m\rangle](\mathbf{r}_0)$$

M

Exponential flights

Random flights with jump lengths

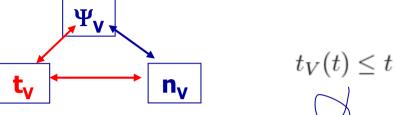
$$\varphi(\ell) = \sigma_t e^{-\ell \sigma_t}$$



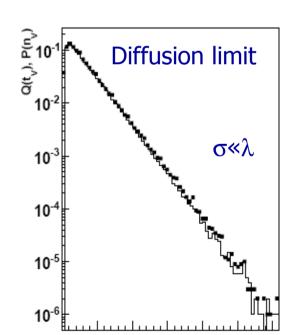
- Physical meaning: **homogeneous** scattering centers
- Defining **time**: t=ℓ/v
- Markovian (memoryless) $\mathbf{z}_t = \{\mathbf{r}_t, \omega_t\}$
- $\qquad \textbf{Chapman-Kolmogorov:} \qquad \frac{\partial}{\partial t} \Psi(\mathbf{r},\omega,t|\mathbf{r}_0,\omega_0) = \mathcal{L}\Psi(\mathbf{r},\omega,t|\mathbf{r}_0,\omega_0)$
 - \square Forward transport operator $\mathcal{L} = -\mathbf{v} \cdot \nabla_{\mathbf{r}} + \frac{1}{\tau_s \Omega_d} \int d\omega \frac{1}{\tau_t}$
- Collision density: $\Psi(\mathbf{r}, \omega | \mathbf{r}_0, \omega_0) = \frac{1}{\tau_t} \int_0^{+\infty} \Psi(\mathbf{r}, \omega, t | \mathbf{r}_0, \omega_0) dt$

Residence times of exponential flights

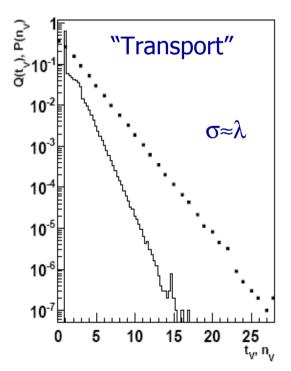
Understanding the relation between



■ Residence time $t_V(t) = \int_0^t \chi[\mathbf{z}(t')]dt'$



200 300



Collisions: dots

Residence time: solid line

Kac moment formula

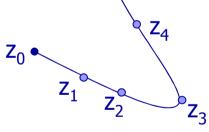
$$Q(t_{V}|\mathbf{z}_{0})dt_{V} = \int d\mathbf{z}\Psi(\mathbf{z}, t_{V}|\mathbf{z}_{0}) - \int d\mathbf{z}\Psi(\mathbf{z}, t_{V} + dt_{V}|\mathbf{z}_{0})$$

$$\langle t_{V}^{m}\rangle(\mathbf{z}_{0}) = m \int_{0}^{+\infty} t_{V}^{m-1} \int d\mathbf{z}\Psi(\mathbf{z}, t_{V}|\mathbf{z}_{0})dt_{V}$$

Markovian: partition trajectory over z_i

$$\mathbf{z}_0, \mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_m = \mathbf{z}$$

 $t_0 = 0, t_1, t_2, ..., t_m = t_V$



Convolutions in phase space: $\Psi(z_0 \rightarrow z) = \Psi(z_0 \rightarrow z_1) * \Psi(z_1 \rightarrow z_2) * ... * \Psi(z_{m-1} \rightarrow z)$

Kac moment formula

We have then the convolution products

$$\langle t_V^m \rangle(\mathbf{z}_0) = m! \int d\mathbf{z}_m \int_0^{+\infty} dt_m \dots \int_0^{t_2} dt_1 \Psi(\mathbf{z}_m, t_m - t_{m-1} | \mathbf{z}_{m-1}) * \dots * \Psi(\mathbf{z}_1, t_1 | \mathbf{z}_0)$$

$$\Psi(\mathbf{z}_{i+1}, t_{i+1} - t_i | \mathbf{z}_i) * \Psi(\mathbf{z}_i, t_i - t_{i-1} | \mathbf{z}_{i-1}) = \int d\mathbf{z}_i \Psi(\mathbf{z}_{i+1}, t_{i+1} - t_i | \mathbf{z}_i) \Psi(\mathbf{z}_i, t_i - t_{i-1} | \mathbf{z}_{i-1})$$

 \Box Fubini's theorem $m\int_{0}^{+\infty}t_{m}^{m-1}...dt_{m}=m!\int_{0}^{+\infty}dt_{m}...\int_{0}^{t_{2}}dt_{1}$

$$\qquad \qquad \textbf{Moment formula} \qquad \frac{\langle t_V^m \rangle(\mathbf{z}_0)}{\tau_t^m} = m! \int d\mathbf{z}_m \Psi(\mathbf{z}_m | \mathbf{z}_{m-1}) * \dots * \Psi(\mathbf{z}_1 | \mathbf{z}_0)$$

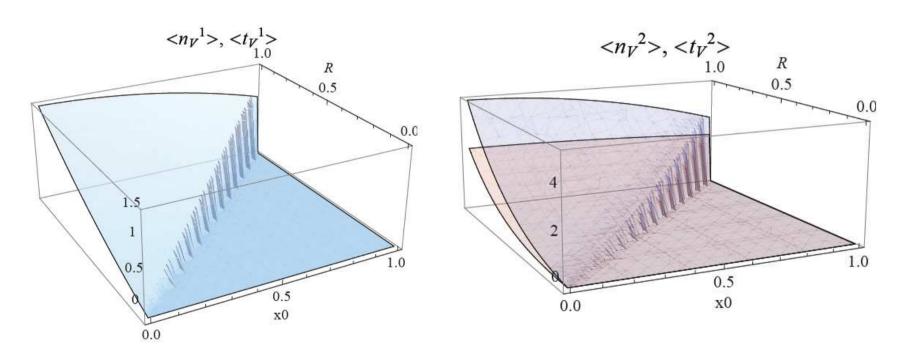
 \square Collision density $\Psi(\mathbf{z}_{i+1}|\mathbf{z}_i) = \frac{1}{\tau_t} \int_0^{+\infty} \Psi(\mathbf{z}_{i+1}, t|\mathbf{z}_i) dt$

Some calculations

- Exponential flights in 1d ("rod model")
- Oversimplified model, but captures essential transport features
- Analytical results: compare the moments of n_v and t_v
- Two cases:
 - □ **Leakage** boundary conditions and pure scattering (homogeneous finite-size medium V surrounded by vacuum: first-passage problem)
 - □ Transparent boundaries and absorption (homogeneous infinite medium: observe statistics on a finite-size domain V)
- Set v=1, and rescale $r=r/\sigma$ (equal average flight time and flight length)
 - $\ \square$ Directly compare the moments of $\mathbf{n_V}$ and $\mathbf{t_V}$

Leakage boundaries

■ Moments for isotropic source: depend on x_0 and R

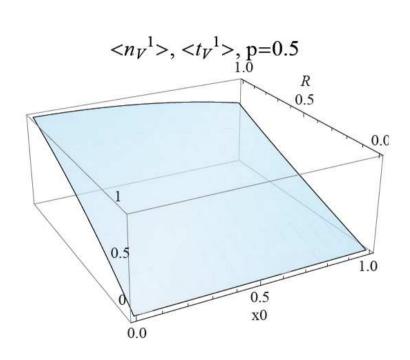


Average n_v and t_v **unbiased** to each other

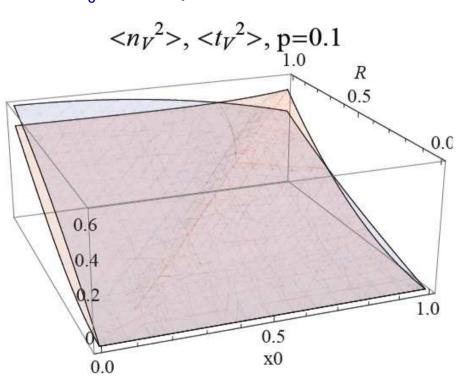
... but have different variances

Transparent boundaries

■ Moments for isotropic source: depend on x_0 , R and p



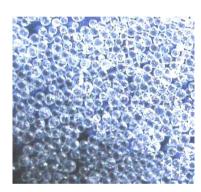
Average n_V and t_V **unbiased** (for any p)

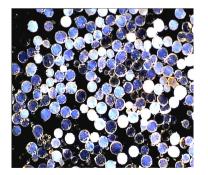


... but have different variances

Conclusions and perspectives

- General mathematical framework for random flights
- Collision statistics and equilibrium distribution
- Exponential flights as a particular case: time statistics
- Strong hypothesis: single space scale
 - □ Adequate model for 'homogeneous' media
 - ☐ In the diffusion limit, converges to Brownian motion
- Transport in **disordered** (heterogeneous/anisotropic) media
 - □ Coexistence of **many** space **scales**
 - □ Converges to **anomalous diffusion** (?)





Thank you

- Questions?
- References [ArXiv]
 - □ A. Zoia, E. Dumonteil, A. Mazzolo, *Collision densities and mean residence times for d-dimensional exponential flights,* Phys. Rev. E **83**, 041137 (2011).
 - □ A. Zoia, E. Dumonteil, A. Mazzolo, *Collision number statistics for transport processes*, Phys. Rev. Lett. **106**, 220602 (2011).
 - □ A. Zoia, E. Dumonteil, A. Mazzolo, *Residence time and collision statistics for exponential flights: the rod problem revisited*, Phys. Rev. E **84**, 021139 (2011).
 - □ A. Zoia, E. Dumonteil, A. Mazzolo, *Collision statistics for random flights with anisotropic scattering and absorption*, in preparation.

Feynman-Kac formulae

• Kac functional $F(t, s | \mathbf{z}_0) = \langle e^{-st_V(t)} \rangle$

$$\frac{\partial}{\partial t} F(t, s | \mathbf{z}_0) = \mathcal{L}^* F(t, s | \mathbf{z}_0) - s \chi[\mathbf{z}_0] F(t, s | \mathbf{z}_0) \qquad \mathcal{L}^* = \mathbf{v}_0 \cdot \nabla_{\mathbf{r}_0} + \frac{1}{\tau_s} \int d\omega_0 - \frac{1}{\tau_t}$$

$$\langle t_V^m \rangle(\mathbf{z}_0, t) = (-1)^m \frac{\partial^m}{\partial s^m} F(t, s | \mathbf{z}_0)|_{s=0}$$

Recursion for the moments

$$\frac{\partial}{\partial t} \langle t_V^m \rangle(\mathbf{z}_0, t) = \mathcal{L}^* \langle t_V^m \rangle(\mathbf{z}_0, t) + m \chi[\mathbf{z}_0] \langle t_V^{m-1} \rangle(\mathbf{z}_0, t)$$

■ Infinite observation time: $\mathcal{L}^*\langle t_V^m \rangle(\mathbf{z}_0) = -m\chi[\mathbf{z}_0]\langle t_V^{m-1} \rangle(\mathbf{z}_0)$

$$t_V(\mathbf{z}_0) = \lim_{t \to +\infty} t_V(\mathbf{z}_0, t)$$