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Stochastic transport

� Random flights (Pearson’s random walk, 1905)

� Straight line ‘flights’ (random length)

� Collisions

� Scattered with probability p

� Absorbed with probability 1-p
r0

rn
� Renewal process with reorientation and reward

� Deceivingly simple: many open questions…



4

Examples of random flights

Neutron/photon flux

Charge transport

Plasmas Porous media Finance

Search strategies
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General framework

� Collision number nV and residence time tV in a region V

� Applications in reactor physics: neutrons or photons

� power deposition and/or atomic displacements in a volume

� theory of Monte Carlo estimators: “collision” (nV) and “track length” (tV)

� Mean: average particle concentration in V

� Variance: uncertainty

� Hypotheses: iid flights, single speed, isotropic scattering
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Collision statistics

� Statistics of collision number nV ≤ n in a volume V

� d-dimensional setup (dependence on r0)

� Key of our analysis: moments

� Distribution:
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Key ingredients

� Let π(r,r’) be the probability density of performing a flight from r’ to r

� Define the transport operator

� Isotropic point source: δ(r-r0)

� The propagator Ψ(r,n|r0) is the probability density of finding a particle 
in r entering the n-th collision, starting from r0 (*)

it follows then

� If we define the n-iterated transport operator

(*) The propagator depends on boundary conditions
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Collision statistics

� Define the collision density Ψ(r|r0)

� Then we have the moments

Stirling numbers of the second kind

Kac integrals

Equilibrium (limit) distribution

� Link between ΨΨΨΨV and nV
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Applications

� Numerical integration for arbitrary π(r,r’)

� Moment formula

� Analytical calculations for simple geometries and propagators

� Example. d-dimensional “Gamma flights” in spherical geometries:

random flights with Gamma-distributed lengths ℓα-1exp(-ℓ)/Γ(α)

n
n-1

ΩΩΩΩd
ℓ
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Example 1

� Gamma flights: d=3, α=2, p=1, “transparent” boundaries

� Moments:

� Collision density

r0

rn
� V is a sphere with radius R; walks can start inside or outside 

V
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Example 1

� Gamma flights: d=3, α=2, p=1

� Monte Carlo simulation (symbols), analytical curves (solid lines)

� Fixed r0, varying R

� Fixed R, varying r0
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Example 2

� Gamma flights: d=1, α=1, p=0.5, transparent boundaries

Exponential flights: α=1 r0

rn

� Omitted formulas

� Collision density

� V is a “sphere” with radius R; 

walks can start inside or outside 

V
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Example 3

� Gamma flights: d=1, α=1, p=1, leakage boundaries

Exponential flights: α=1

r0

rn+1

� Method of images

� Omitted formulas

� Collision density

V
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Why? Proof (1)

� Formal relation

� Recall that

� Then, from

we have

where Polylogarithm (Jonquière function)

Rational function:

for non-negative integer -m

� Survival probability
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Proof (2)

� Define the operator

� Apply formal Neumann series

� Then and

� Recall that and

we can rewrite

as

� From
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Proof (3)

� We have

� We can identify

with

� It follows finally

� Remark the recursion property
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Large nV behavior

� Discrete moment generating function G(z|r0)

� Relation to the distribution

� Moments expansion

� It follows the small-z behavior

� Hence from Tauberian theorems
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Simulations

� Exponential decay of the distribution: 

simulations (circles) and log-lin fit (solid line)

� 3d Gamma flights (α=2) � 3d exponential flights

nv nv



19

Discussion: existence of Ck(r0)

� Convolution Kac integrals

� Recursion

� Hence the existence of Ck(r0) depends on

� Remark that we have

� Ψ(r|r0) depends on boundary conditions, p, and dimension d

� Worst case (transparent boundaries and p=1): d>2

� Recurrent and transient walks: Polya’s theorem
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Use and abuse of the formula

� Direct approach: from equilibrium distribution to moments

� Knowledge of the process allows assessing collision statistics

� Example: neutron or photon transport

+

� Inverse approach: from moments to equilibrium distribution

� Knowledge of the moments allows assessing features of underlying process

� Example: biology or economics

� Warning: it is a difficult problem!
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Diffusion limit

� Choose σ « λ

λλλλ

σσσσ � σσσσ: flight length

� λλλλ: domain size
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Brownian functionals

� Analogously, F[rn] converges to F[Bn]

� When σ « λ, nV explodes

���� ?� What happens to F = 

� We need a rescaling: the natural candidate is the time t = n (σ / v)

� Central Limit Theorem: when σ « λ, every “reasonable” random flight 
rn converges to Brownian motion Bn
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Diffusion limit (1)

� Finite speed v (neglect absorption)

� Isotropy:

� Identically distributed flight times

� Residence time in V:

� Diffusion limit: small σ, which implies small

We impose a finite ratio

, and

� Effects of boundary conditions r0

rn+1

r0

rn

σ σ σ σ « λλλλσ σ σ σ ≈≈≈≈ λλλλ
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Diffusion limit (2)

of� Introduce the distribution

� In Laplace space the distribution of the sum is

� Then,

which implies

� Hence,

� For any “reasonable” w(t), we have when
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Diffusion limit (3)

� We can combine

with

� Rescale r by σ: each term in the sum gives

� Only the leading order m survives

� We finally obtain the celebrated Kac formula

which is known for Brownian motion

(p=1)

� Moreover, we have the recursion property
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Exponential flights

� Random flights with jump lengths

� Physical meaning: homogeneous scattering centers

� Defining time: t=ℓ/v

� Markovian (memoryless)

� Chapman-Kolmogorov:

� Forward transport operator

� Collision density:
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Residence times of exponential flights

� Understanding the relation between

ΨΨΨΨV

nVtV

V

tV� Residence time

σ«λ σ≈λ
� Collisions: dots

� Residence time: solid line

Diffusion limit “Transport”
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Kac moment formula

z0

z

� Moments 

z1 z2 z3

z4

zm-1

� Markovian: partition trajectory over zi

� Convolutions in phase space: Ψ(z0�z) = Ψ(z0�z1)*Ψ(z1�z2)*…*Ψ(zm-1�z)
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Kac moment formula

� We have then the convolution products

� Fubini’s theorem

� Moment formula

� Collision density
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Some calculations

� Exponential flights in 1d (“rod model”)

� Oversimplified model, but captures essential transport features

� Analytical results: compare the moments of nV and tV

� Two cases:

� Leakage boundary conditions and pure scattering (homogeneous finite-size 

medium V surrounded by vacuum: first-passage problem)

� Transparent boundaries and absorption (homogeneous infinite medium: 

observe statistics on a finite-size domain V)

� Set v=1, and rescale r=r/σ (equal average flight time and flight length)

� Directly compare the moments of nV and tV
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Leakage boundaries

� Moments for isotropic source: depend on x0 and R

Average nV and tv
unbiased to each other

… but have different variances
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Transparent boundaries

� Moments for isotropic source: depend on x0, R and p

Average nV and tV
unbiased (for any p)

… but have different variances
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Conclusions and perspectives

� General mathematical framework for random flights

� Collision statistics and equilibrium distribution

� Exponential flights as a particular case: time statistics

� Strong hypothesis: single space scale

� Adequate model for ‘homogeneous’ media

� In the diffusion limit, converges to Brownian motion

� Transport in disordered (heterogeneous/anisotropic) media

� Coexistence of many space scales

� Converges to anomalous diffusion (?)
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Feynman-Kac formulae

� Kac functional

� Recursion for the moments

� Infinite observation time:


