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Abstract. The classical Brauer–Siegel theorem states that if k runs
through the sequence of normal extensions of Q such that nk/ log |Dk| →
0, then log(hkRk)/ log

√
|Dk| → 1. In this paper we give a survey of var-

ious generalizations of this result including some recent developements
in the study of the Brauer–Siegel ratio in the case of higher dimensional
varieties over global fields. We also present a proof of a higher dimen-
sional version of the Brauer–Siegel theorem dealing with the study of
the asymptotic properties of the residue at s = d of the zeta function in
a family of varieties over finite fields.

1. Introduction

Let K be an algebraic number field of degree nK = [K : Q] and discrim-
inant DK . We define the genus of K as gK = log

√
DK . By hK we denote

the class-number of K, RK denotes its regulator. We call a sequence {Ki}
of number fields a family if Ki is non-isomorphic to Kj for i 6= j. A family
is called a tower if also Ki ⊂ Ki+1 for any i. For a family of number fields
we consider the limit

BS(K) := lim
i→∞

log(hKiRKi)
gKi

.

The classical Brauer–Siegel theorem, proved by Brauer (see [3]) can be stated
as follows:

Theorem 1.1 (Brauer–Siegel). For a family K = {Ki} we have

BS(K) := lim
i→∞

log(hKiRKi)
gKi

= 1

if the family satisfies two conditions:
(i) lim

i→∞

nKi
gKi

= 0;

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the
fields Ki are normal over Q.

The initial motivation for the Brauer–Siegel theorem can be traced back
to a conjecture of Gauss:

Conjecture 1.2 (Gauss). There are only 9 imaginary quadratic fields with
class number equal to one, namely those having their discriminants equal to
−3, −4, −7, −8, −11, −19, −43, −67, −163.

The first result towards this conjecture was proven by Heilbronn in [11].
He proved that hK → ∞ as DK → −∞. Moreover, together with Linfoot
[12] he was able to verify that Gauss’ list was complete with the exception
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of at most one discriminant. However, this “at most one” part was com-
pletely ineffective. The initial question of Gauss was settled independently
by Heegner [10], Stark [28] and Baker [1] (initially the paper by Heegner was
not acknowledged as giving the complete proof). We refer to [35] for a more
thorough discussion of the history of the Gauss class number problem.

A natural question was to find out what happens with the class number in
the case of arbitrary number fields. Here the situation is more complicated.
In particular a new invariant comes into play: the regulator of number
fields, which is very difficult to separate from the class number in asymtotic
considerations (in particular, for this reason the other conjecture of Gauss
on the infinitude of real quadratic fields having class number one is still
unproven). A major step in this direction was made by Siegel [27] who was
able to prove Theorem 1.1 in the case of quadratic fields. He was followed
by Brauer [3] who actually proved what we call the classical Brauer–Siegel
theorem.

Ever since a lot of different aspects of the problem have been studied.
For example, the major difficulty in applying the Brauer–Siegel theorem
to the class number problem is its ineffectiveness. Thus many attempts to
obtain good explicit bounds on hKRK were undertaken. In particular we
should mention the important paper of Stark [29] giving an explicit version
of the Brauer–Siegel theorem in the case when the field contains no quadratic
subfields. See also some more recent papers by Louboutin [21], [22] where
better explicit bounds are proven in certain cases. Even stronger effective
results were needed to solve (at least in the normal case) the class-number-
one problem for CM fields, see [15], [25], [2].

In another direction, assuming the generalized Riemann hypothesis (GRH)
one can obtain more precise bounds on the class number then those given
by the Brauer–Siegel theorem. For example in the case of quadratic fields
we have hK << D

1/2
K (log logDK/ logDK). In particular they are known to

be optimal in many cases (see [5], [6], [4]).
A full survey of the problems stemming from the study of the Brauer–

Siegel type questions definitely lies beyond the scope of this article. Our
goal is more modest. Here we survey the results that generalize the classical
Brauer–Siegel theorem. In §2 the case of families of number fields violating
one (or both) of the conditions (i) and (ii) of theorem 1.1 is discussed. In
particular we introduce the notion of Tsfasman–Vlăduţ invariants of global
fields that allow to express the Brauer–Siegel limit in general. In §3 we sur-
vey the known results and conjectures about the Brauer–Siegel type state-
ments in the higher dimensional situation. Finally, in the last §4 we prove
a Brauer–Siegel type result (theorem 3.2) for families of varieties over finite
fields. This theorem expresses the asymptotic properties of the residue at
s = d of the zeta function of smooth projective varieties over finite fields via
the asymptotics of the number of Fqm-points on them.

2. The case of global fields: Tsfasman–Vlăduţ approach

A natural question is whether one can weaken the conditions (i) and (ii)
of theorem 1.1. The first condition seems to be the most restrictive one.
Tsfasman and Vlăduţ were able to deal with it first in the function field
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case [31], [32] and then in the number field case [33] (which was as usual
more difficult, especially from the analytical point of view). It turned out
that one has to take in account non-archimedian place to be able to treat
the general situation. Let us introduce the necessary notation in the number
field case (for the function field case see §3).

For a prime power q we set

Φq(Ki) := |{v ∈ P (Ki) : Norm(v) = q}|,

where P (Ki) is the set of non-archimedian places of Ki. Taking in account
the archimedian places we also put ΦR(Ki) = r1(Ki) and ΦC(Ki) = r2(Ki),
where r1 and r2 stand for the number of real and (pairs of) complex embed-
dings.

We consider the set A = {R,C; 2, 3, 4, 5, 7, 8, 9, . . .} of all prime powers
plus two auxiliary symbols R and C as the set of indices.

Definition 2.1. A family K = {Ki} is called asymptotically exact if and
only if for any α ∈ A the following limit exists:

φα = φα(K) := lim
i→∞

Φα(Ki)
gKi

.

We call an asymptotically exact family K asymptotically good (respectively,
bad) if there exists α ∈ A with φα > 0 (respectively, φα = 0 for any α ∈ A).
The φα are called the Tsfasman–Vlăduţ invariants of the family {Ki}.

One knows that any family of number fields contains an asymptotically
exact subfamily so the condition on a family to be asymptotically exact is not
very restrictive. On the other hand, the condition of asymptotical goodness
is indeed quite restrictive. It is easy to see that a family is asymptotically
bad if and only if it satisfies the condition (i) of the classical Brauer–Siegel
theorem. In fact, before the work of Golod and Shafarevich [9] even the
existence of asymptotically good families of number fields was unclear. Up
to now the only method to construct asymptotically good families in the
number field case is essentially based on the ideas of Golod and Shafare-
vich and consists of the usage of classfield towers (quite often in a rather
elaborate way). This method has the disadvantage of beeing very inexplicit
and the resulting families are hard to controll (ex. splitting of the ideals,
ramification, etc.). In the function field case we dispose of a much wider
range of constructions such as the towers coming from supersingular points
on modular curves or Drinfeld modular curves ([16], [34]), the explicit iter-
ated towers proposed by Garcia and Stichtenoth [7], [8] and of course the
classfield towers as in the number field case (see [26] for the treatement of
the function field case).

This partly explains why so little is known about the above set of invari-
ants φα. Very few general results about the structure of the set of possible
values of (φα) are available. For instance, we do not know whether the set
{α | φα 6= 0} can be infinite for some family K. We refer to [20] for an
exposition of most of the known results on the invariants φα.

Before formulating the generalization of the Brauer–Siegel theorem proven
by Tsfasman and Vlăduţ in [33] we have to give one more definition. We
call a number field almost normal if there exists a finite tower of number
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fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Km = K such that all the extensions Ki/Ki−1

are normal.

Theorem 2.2 (Tsfasman–Vlăduţ). Assume that for an asymptotically good
tower K any of the following conditions is satisfied:

• GRH holds
• All the fields Ki are almost normal over Q.

Then the limit BS(K) = lim
i→∞

log(hKi
RKi

)

gKi
exists and we have:

BS(K) = 1 +
∑
q

φq log
q

q − 1
− φR log 2− φC log 2π,

the sum beeing taken over all prime powers q.

We see that in the above theorem both the conditions (i) and (ii) of the
classical Brauer–Siegel theorem are weakend. A natural supplement to the
above theorem is the following result obtained by the author in [36]:

Theorem 2.3 (Zykin). Let K = {Ki} be an asymptotically bad family of
almost normal number fields (i. e. a family for which nKi/gKi → 0 as
i→∞). Then we have BS(K) = 1.

One may ask if the values of the Brauer–Siegel ratio BS(K) can really
be different from one. The answer is “yes”. However, due to our lack of
understanding of the set of possible (φα) there are only partial results. Under
GRH one can prove (see [33]) the following bounds on BS(K) : 0.5165 ≤
BS(K) ≤ 1.0938. The existence bounds are weaker. There is an example of
a (class field) tower with 0.5649 ≤ BS(K) ≤ 0.5975 and another one with
1.0602 ≤ BS(K) ≤ 1.0938 (see [33] and [36]). Our inability to get the exact
value of BS(K) lies in the inexplicitness of the construction: as it was said
before, class field towers are hard to control. A natural question is whether
all the values of BS(K) between the bounds in the examples are attained.
This seems difficult to prove at the moment though one may hope that some
density results (i. e. the density of the values of BS(K) in a certain interval)
are within reach of the current techniques.

Let us formulate yet another version of the generalized Brauer–Siegel
theorem proven by Lebacque in [19]. It assumes GRH but has the advantage
of beeing explicit in a certain (unfortunately rather weak) sense:

Theorem 2.4 (Lebacque). Let K = {Ki} be an asymptotically exact family
of number fields. Assume that GRH in true. Then the limit BS(K) exists,
and we have:∑

q≤x
φq log

q

q − 1
− φR log 2− φC log 2π = BS(K) +O

(
log x√
x

)
.

This theorem is an easy corollary of the generalised Mertens theorem
proven in [19]. We should also note that Lebacque’s apporoach leads to a
unified proof of theorems 2.2 and 2.3 with or without the assumption of
GRH.



ON THE GENERALIZATIONS OF THE BRAUER–SIEGEL THEOREM 5

3. Varieties over global fields

Once we are in the realm of higher dimensional varieties over global fields
the question of finding a proper analogue of the Brauer–Siegel theorem be-
comes more complicated and the answers which are currently available are
far from being complete. Here we have essentially three approaches: the
one by the author (which leads to a fairly simple result), another one by
Kunyavskii and Tsfasman and the last one by Hindry and Pacheko (which
for the moment gives only plausible conjectures). We will present all of them
one by one.

The proof of the cassical Brauer–Siegel theorem as well as those of its
generalisations discussed in the previous section passes through the residue
formula. Let ζK(s) be the Dedekind zeta function of a number field K and
κK its residue at s = 1. By wK we denote the number of roots of unity in
K. Then we have the following classical residue formula:

κK =
2r1(2π)r2hKRK

wK
√
DK

.

This formula immediately reduces the proof of the Brauer–Siegel theorem
to an appropriate asymptotical estimate for κK as K varies in a family
(by the way, this makes clear the connection with GRH which appears in
the statement of the Brauer–Siegel theorem). So, in the higher dimensional
situation we face two completely different problems:

(i) Study the asymptotic properties of a value of a certain ζ or L-
function.

(ii) Find an (arithmetic or geometric) interpretation of this value.
One knows that just like in the case of global fields in the d-dimensional

situation zeta function ζX(s) of a variety X has a pole of order one at s = d.
Thus the first idea would be to take the residue of ζX(s) at s = d and study
its asymptotic behaviour. In this direction we can indeed obtain a result.
Let us proceed more formally.

Let X be a complete non-singular absolutely irreducible projective variety
of dimension d defined over a finite field Fq with q elements, where q is a
power of p. Denote by |X| the set of closed points of X. We put Xn =
X⊗Fq Fqn and X = X⊗Fq Fq. Let Φqm be the number of places of X having
degree m, that is Φqm = |{p ∈ |X| | deg(p) = m}|. Thus the number Nn of
Fqn-points of the variety Xn is equal to

Nn =
∑
m|n

mΦqm .

Let bs(X) = dimQl
Hs(X,Ql) be the l-adic Betti numbers of X. We set

b(X) = maxi=1...2d bi(X). Recall that the zeta function of X is defined for
Re(s) > d by the following Euler product:

ζX(s) =
∏

p∈|X|

1
1−N(p)−s

=
∞∏
m=1

(
1

1− q−sm

)Φqm

,

where N(p) = q− deg p. It is known that ζX(s) has an analytic continutation
to a meromorphic function on the complex plane with a pole of order one at
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s = d. Furthermore, if we set Z(X, q−s) = ζX(s) then the function Z(X, t)
is a rational function of t = q−s.

Consider a family {Xj} of complete non-singular absolutely irreducible d–
dimensional projective varieties over Fq. We assume that the families under
consideration satisfy b(Xj) → ∞ when j → ∞. Recall (see [18]) that such
a family is called asymptotically exact if the following limits exist:

φqm({Xj}) = lim
j→∞

Φqm(Xj)
b(Xj)

, m = 1, 2, . . .

The invariants φqm of a family {Xj} are called the Tsfasman–Vlăduţ in-
variants of this family. One knows that any family of varieties contains an
asymptotically exact subfamily.

Definition 3.1. We define the Brauer–Siegel ratio for an asymptotically
exact family as

BS({Xj}) = lim
j→∞

log |κ(Xj)|
b(Xj)

,

where κ(Xj) is the residue of Z(Xj , t) at t = q−d.

In §4 we prove the following generalization of the classical Brauer–Siegel
theorem:

Theorem 3.2. For an asymptotically exact family {Xj} the limit BS({Xj})
exists and the following formula holds:

(1) BS({Xj}) =
∞∑
m=1

φqm log
qmd

qmd − 1
.

However, we come across a problem when we trying to carry out the
second part of the strategy sketched above. There seems to be no easy
geometric interpretaion of the invariant κ(X) (apart from the case d = 1
where we have a formula relating κX to the number of Fq-points on the
Jacobian of X). See however [23] for a certain cohomological interpretation
of κ(X).

Let us now switch our attention to the two other approaches by Kunyavskii–
Tsfasman and by Hindry–Pacheko. Both of them have for their starting
points the famous Birch–Swinnerton-Dyer conjecture which expresses the
value at s = 1 of the L-function of an abelian variety in terms of certain
arithmetic invariants related to this variety. Thus, in this case we have (at
least conjecturally) an interpretation of the special value of the L-function
at s = 1. However, the situation with the asymptotic behaviour of this value
is much less clear. Let us begin with the approach of Kunyavskii–Tsfasman.
To simplify our notation we restrict ourselves to the case of elliptic curves
and refer for the general case of abelian varieties to the original paper [17].

Let K be a global field that is either a number field or K = Fq(X) where
X is a smooth, projective, geometrically irreducible curve over a finite field
Fq. Let E/K be an elliptic curve over K. Let X := |X(E)| be the order
of the Shafarevich–Tate group of E, and ∆ the determinant of the Mordell–
Weil lattice of E (see [30] for definitions). Note that in a certain sense X and
∆ are the analogues of the class number and of the regulator respectively.
The goal of Kunyavskii and Tsfasman in [17] is to study the asymptotic
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behaviour of the product X · ∆ as g → ∞. They are able to treat the
so-called constant case:

Theorem 3.3 (Kunyavskii–Tsfasman). Let E = E0 ×Fq K where E0 a
fixed elliptic curve over Fq. Let K vary in an asymptotically exact family
{Ki} = {Fq(Xi)}, and let φqm = φqm({Xi}) be the corresponding Tsfasman–
Vlăduţ invariants. Then

lim
i→∞

logq(Xi ·∆i)
gi

= 1−
∞∑
m=1

φqm logq
Nm(E0)
qm

,

where Nm(E0) = |E0(Fqm)|.

Note that there is no need to assume the above mentioned Birch and
Swinnerton-Dyer conjecture as it was proven by Milne [24] in the constant
case. The proof of the above theorem uses this result of Milne to get an
explicit formula for X · ∆ thus reducing the proof of the theorem to the
study of asymptotic properties of curves over finite fields the latter ones
being much better known.

Kunyavskii and Tsfasman also make a conjecture in a certain non con-
stant case. To formulate it we have to introduce some more notation. Let E
be again an arbitrary elliptic K-curve. Denote by E the corresponding ellip-
tic surface (this means that there is a proper connected smooth morphism
f : E → X with the generic fibre E). Assume that f fits into an infinite
Galois tower, i.e. into a commutative diagram of the following form:

(2)

E = E0 ←−−−− E1 ←−−−− . . . ←−−−− Ej ←−−−− . . .yf y y
X = X0 ←−−−− X1 ←−−−− . . . ←−−−− Xj ←−−−− . . . ,

where each lower horizontal arrow is a Galois covering. For every v ∈ X
closed point in X, let Ev = f−1(v). Let Φv,i denote the number of points
of Xi lying above v, φv = limi→∞Φv,i/gi (we suppose the limits exist).
Furthermore, denote by fv,i the residue degree of a point of Xi lying above
v (the tower being Galois, this does not depend on the point), and let
fv = limi→∞ fv,i. If fv = ∞, we have φv = 0. If fv is finite, denote
by N(Ev, fv) the number of Fqfv -points of Ev. Finally, let τ denote the
“fudge” factor in the Birch and Swinnerton-Dyer conjecture (see [30] for its
precise definition). Under this setting Kunyavskii and Tsfasman formulate
the following conjecture in [17]:

Conjecture 3.4 (Kunyavskii–Tsfasman). Assuming the Birch and Swin-
nerton-Dyer conjecture for elliptic curves over function fields, we have

lim
i→∞

logq(Xi ·∆i · τi)
gi

= 1−
∑
v∈X

φv logq
N(Ev, fv)

qfv
.

Let us finally turn our attention to the approach of Hindry and Pacheko.
They treat the case in some sense “orthogonal” to that of Kunyavskii and
Tsfasman. Here, contrary to the previous setting of this section, we consider
the number field case as the more complete one. We refer to [14] for the
function field case. As in the approach of Kunyavskii and Tsfasman we study
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elliptic curves over global fields. However, here the ground field K is fixed
and we let vary the elliptic curve E. Denote by h(E) the logarithmic height
of an elliptic curve E (see [13] for the precise definition, asymptotically its
properties are close to those of the conductor). Hindry in [13] formulates
the following conjecture:

Conjecture 3.5 (Hindry–Pacheko). Let Ei run through a family of pairwise
non-isomorphic elliptic curves over a fixed number field K. Then

lim
i→∞

log(Xi ·∆i)
h(Ei)

= 1.

To motivate this conjecture, Hidry reduces it to a conjecture on the
asymptotics of the special value of L-functions of elliptic curves at s = 1
using the conjecture of Birch and Swinnerton-Dyer as well as that of Szpiro
and Frey (the latter one is equivalent to the ABC conjecture when K = Q).

Let us finally state some open questions that arise naturally from the
above discussion.

• What is the number field analogue of theorem 3.2?
It seems not so difficult to prove the result corresponding to theorem 3.2

in the number field case assuming GRH. Without GRH the situation looks
much more challenging. In particular, one has to be able to controll the so
called Siegel zeroes of zeta functions of varieties (that is real zeroes close to
s = d) which might turn out to be a difficult problem. The conjecture 3.4
can be easily written in the number field case. However, in this situation
we have even less evidence for it since theorem 3.3 is a particular feature of
the function field case.

• How can one unify the conjectures of Kunyavskii–Tsfasman and
Hindry—Pacheko?

In particular it is unclear which invariant of elliptic curves should play
the role of genus from the case of global fields. It would also be nice to be
able to formulate some conjectures for a more general type of L-functions,
such as automorphic L-functions.

• Is it possible to justify any of the above conjectures in certain par-
ticular cases? Can one prove some cases of these conjectures “on
average” (in some appropriate sense)?

For now the only case at hand is the one given by theorem 3.3.

4. The proof of the Brauer–Siegel theorem for varieties over
finite fields: case s = d

Recall that the trace formula of Lefschetz–Grothendieck gives the follow-
ing expression for Nn — the number of Fqn points on a variety X :

(3) Nn =
2d∑
s=0

(−1)sqns/2
bs∑
i=1

αns,i,

where {qs/2αs,i} is the set of of inverse eigenvalues of the Frobenius endo-
morphism acting on Hs(X,Ql). By Poincaré duality one has b2d−s = bs and
αs,i = α2d−s,i. The conjecture of Riemann–Weil proven by Deligne states
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that the absolute values of αs,i are equal to 1. One also knows that b0 = 1
and α0,1 = 1.

One can easily see that for Z(X, q−s) = ζX(s) we have the following power
series expansion:

(4) logZ(X, t) =
∞∑
n=1

Nn
tn

n
.

Combining (4) and (3) we obtain

(5) Z(X, t) =
2d∏
s=0

(−1)s−1Ps(X, t),

where Ps(X, t) =
∏bi
i=1(1 − qs/2αs,i). Furthermore we note that P0(X, t) =

1− t and P2d(X, t) = 1− qdt.
To prove theorem 3.2 we will need the following lemma.

Lemma 4.1. For c→∞ we have

log |κ(Xj)|
b(Xj)

=
c∑
l=1

Nl(Xj)− qdl

l
q−dl +Rc(Xj),

with Rc(Xj)→ 0 uniformly in j.

Proof of the Lemma. Using (5) one has

log |κ(Xj)|
b(Xj)

+ d
log q
b(Xj)

=
1

b(Xj)

2d−1∑
s=0

(−1)s+1 log |Ps(Xj , q
−d)| =

=
1

b(Xj)

2d−1∑
s=0

(−1)s+1

bs(Xj)∑
k=1

log(1− q(s−2d)/2αs,i) =

= − 1
b(Xj)

2d−1∑
s=0

(−1)s+1

bs(Xj)∑
k=1

∞∑
l=1

q(s−2d)l/2αls,i
l

=

=
1

b(Xj)

c∑
l=1

q−dl

l

 2d∑
s=0

(−1)sqsl/2
bs(Xj)∑
k=1

αls,i − qdl
+

+
1

b(Xj)

2d−1∑
s=0

(−1)s
bs(Xj)∑
k=1

∞∑
l=c+1

q(s−2d)l/2αls,i
l

=

=
c∑
l=1

Nl(Xj)− qdl

l
q−dl +Rc(Xj).

An obvious estimate gives

|Rc(Xj)| ≤
∑2d

s=0 bs(Xj)
b(Xj)

∞∑
l=c+1

q−l/2

l
→ 0

for c→∞ uniformly in j. �
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Now let us note that

1
b(Xj)

c∑
l=1

1
l
≤ 2
b(Xj)

log c→ 0

when log c/b(Xj) → 0. Thus to prove the main theorem we are left to deal
with the following sum:

1
b(Xj)

c∑
l=1

q−ld

l
Nl(Xj) =

=
1

b(Xj)

c∑
l=1

q−dl

l

∑
m|l

mΦqm =
1

b(Xj)

c∑
m=1

Φqm

bc/mc∑
k=1

q−mkd

k
=

=
1

b(Xj)

c∑
m=1

Φqm log
qmd

qmd − 1
− 1
b(Xj)

c∑
m=1

Φqm

∞∑
bc/mc+1

q−mkd

k
.

Let us estimate the last term:

1
b(Xj)

c∑
m=1

Φqm

∞∑
k=bc/mc+1

q−mkd

k
≤

≤ 1
b(Xj)

c∑
m=1

Nm(Xj)q−md(bc/mc+1)

m(bc/mc+ 1)(1− q−md)
≤ 1
b(Xj)

c∑
m=1

Nm(Xj)q−cd

c(1− q−md)
≤

≤ 1
b(Xj)

c∑
m=1

(
qmd + 1 +

2d−1∑
s=1

bsq
ms/2

)
q−dc

c(1− q−md)
≤

≤ 1
b(Xj)

(
qcd + 1 +

2d−1∑
s=1

bsq
cs/2

)
q−dc

(1− q−1)
→ 0

as both b(Xj)→∞ and c→∞.
Now, to finish the proof we will need an analogue of the basic inequality

from [31]. In the higher dimensional case there are several versions of it.
However, here the simplest one will suffice. Let us define for i = 0 . . . 2d the
following invariants:

βi({Xj}) = lim sup
j

bi(Xj)
b(Xj)

.

Theorem 4.2. For an asymptotically exact family {Xj} we have the in-
equality:
∞∑
m=1

mφqm

q(2d−1)m/2 − 1
≤ (q(2d−1)/2−1)

( ∑
i≡1 mod 2

βi

q(i−1)/2 + 1
+

∑
i≡0 mod 2

βi

q(i−1)/2 − 1

)
.

Proof. See [18], Remark 8.8. �

Applying this theorem together with the fact that

log
qmd

qmd − 1
= O

(
1

qdm − 1

)
= O

(
m

q(2d−1)m/2 − 1

)
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when m → ∞, we conclude that the series on the right hand side of (1)
converges. Thus the difference

∞∑
m=1

φqm log
qmd

qmd − 1
− 1
b(Xj)

c∑
m=1

Φqm log
qmd

qmd − 1
=

=
c∑

m=1

(
φqm − Φqm

b(Xj)

)
log

qmd

qmd − 1
−

∞∑
m=c+1

φqm log
qmd

qmd − 1
→ 0

when c → ∞, j → ∞ and j is large enough compared to c. This concludes
the proof of theorem 3.2.

Acknowledgements. I would like to thank my advisor Michael Tsfas-
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attaining the Drinfeld-Vlăduţ bound, Invent. Math. 121 (1995), Num. 1, 211-222.

[8] A. Garcia, H. Stichtenoth. Explicit Towers of Function Fields over Finite Fields,
in: Topics in Geometry, Coding Theory and Cryptography (eds. A. Garcia and H.
Stichtenoth), Springer Verlag (2006), 1–58.

[9] E. S. Golod, I. R. Shafarevich. On the class field tower, Izv. Akad. Nauk SSSSR 28
(1964), 261–272 (in Russian)

[10] K. Heegner. Diophantische Analysis und Modulfunktionen, Math. Zeitschrift 56
(1952), 227–253.

[11] H. A. Heilbronn. On the class number of imaginary quadratic fields, Quart. J. Math.
5 (1934), 150-160

[12] H. A. Heilbronn, E. N. Linfoot. On the Imaginary Quadratic Corpora of Class-
Number One, Quart. J. Math. 5 (1934), 293–301.

[13] M. Hindry. Why is it difficult to compute the Mordell–Weil group, preprint.
[14] M. Hindry, A. Pacheko. Un analogue du théorème de Brauer–Siegel pour les variétés
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