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Justification and evidence-based knowledge

Sergei Artemov
CUNY Graduate Center, U.S.A.

Joint work with Melvin Fitting and Elena Nogina

Plato’s much celebrated tripartite definition of knowledge as
justified true belief (JTB) is generally regarded as a set of nec-
essary conditions for the possession of knowledge. Due to Hin-
tikka, the “true belief” components have been fairly formalized
by means of modal logic and its possible worlds semantics. De-
spite the fact that the justification condition has received the
greatest attention in epistemology, it lacked a formal represen-
tation.

We introduce justification into formal epistemology by com-
bining Hintikka-style epistemic modal logic with justification
calculi arising from the logic of proofs. A formal epistemic
logic with justification contains assertions of the form 2F (F
is known), along with those of the form t:F (t is a justifica-
tion for F ). In particular, we consider natural combinations
of epistemic modal logic S4 with the logic of proofs LP. How-
ever, this approach is flexible with respect to both the knowl-
edge/belief component for 2F and the justification component
for t :F , which can be chosen independently. Since there are
other known modifications of LP, each capturing its own set of
justification properties, there is a variety of systems for epis-
temic logic with justification.

Formalization of justification significantly expands the ex-
pressive power of epistemic logic and provides a new tool for
formal studies in epistemology and applications. Here are some
epistemological notions which seem to be affected by this new
development.

1. The foundational Gettier problem of augmenting the tri-
partite JTB definition of knowledge becomes a formal episte-
mology issue.
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2. The traditional Hintikka-style modal logic approach to
knowledge has the well-known defect of logical omniscience,
caused by an unrealistic stipulation that an agent knows all
logical consequences of his/her assumptions. Because of this
defect, the usual epistemic modality 2F should be regarded
as “potential knowledge” or “knowability” rather than actual
knowledge. Epistemic systems with justification address the
issue of logical omniscience in a natural way. A justified knowl-
edge t : F cannot be asserted without presenting an explicit
justification t for F , hence justified knowledge is not logically
omniscient.

3. Epistemic logic with justifications offers a new approach
to common knowledge. A new modal operator Jϕ for justified
knowledge is defined as a forgetful projection of justification
assertions t :ϕ in a multi-agent epistemic logic with common
justification. It turned out that justified knowledge is a special
constructive version of common knowledge and can be used
as such in solving specific problems. Justified knowledge is
considerably more flexible and in many respects easier than
the traditional common knowledge.
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Elementarity and incompleteness for predicate

modal logics with constant domains

S. Astretsov
Lomonosov Moscow State University, Russia

The results presented here show that incompleteness and
elementarity in predicate modal logic are closely related: very
often elementary modal logics are incomplete. This contrasts
with the propositional case in which the existence of elementary
incomplete logic is an open problem [1].

Our modal language ML contains the unique modality 2,
arbitrary predicate symbols (without equality); function sym-
bols or individual constants are not allowed.

Modal formulas are interpreted in Kripke frames with con-
stant domains (W,R,D), where W,D 6= Ø and R ⊆W ×W is
transitive.

These frames are characterized with the well-known logic
QK4B obtained from the classical predicate logic, by adding
the axioms schemes:

2(A→ B) → (2A→ 2B),

∀x2A→ 2∀xA, 2A→ 22A

and the rule A/2A.
Definition. A modal formula A is called elementary, if the
class of all frames F validating A is elementary (if they are
regarded as classical two-sorted first-order structures).

Definition. For a formula A and n > 0 we construct the
propositional modal formula An as follows. First we replace
every occurrence of ∃xB(x) with the disjunction

∨

1≤i≤n

B(ai),

and then replace every occurrence of every atomic formula
Pj(ai1 , . . . , aik) with a new proposition letter qi1...ik

j .

Definition. The rank of a modal formula A (notation: rk(A))
is the minimal n such that for all Kripke frames F = (W,R,D)
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with |D| ≥ n, we have F |= A iff F |= An. If such n does not
exists, we put rk(A) := ∞.

Let Un be a classical first-order formula (without equality)
such that (W,R,D) |= Un iff |D| ≤ n.
Theorem. Suppose A is elementary. Then rk(A) < ∞ and
for all Kripke frames F , F |= A iff F |=

∨

1≤i<n

(Ai ∧ U
i) ∨ An,

where n = rk(A).

Now let us consider a certain class of modal formulas and
describe all elementary formulas in this class. Let S be the set
of all formulas of the form

M1∃xM2P (x) → N1∃xN2P (x),

where M1,M2,N1,N2 are positive modalities such that M1M2

and N1N2 coincide (modal reduction principles).
Theorem. A ∈ S is non-elementary if and only if M1 = N1N3,
where N3 is a positive modality containing 2, and one of the
following conditions holds:
(1) M2 = ♦k, k > 0;
(2) M2 is empty, N3 ends with ♦;
(3) M2 begins with 2, N1 = 2

k (k ≥ 0), N3 = 2
l (l > 0).

Corollary. A ∈ S is elementary iff rk(A) < ∞. Moreover, if
A is elementary, then rk(A) ≤ 2 (and hence A is semantically
equivalent to U1 ∨A2).

Theorem. If A ∈ S is elementary and rk(A) = 2, then the
logic QK4B ⊕A is Kripke incomplete.

The same method is applicable to intermediate logics.
In particular, the well-known logic QH ⊕ (¬¬∃xP (x) →
∃x¬¬P (x)), which is incomplete [2], is elementary; on the other
hand, the logic QH⊕(∀x¬¬P (x) → ¬¬∀xP (x)), which is com-
plete [3], is non-elementary.
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Japaridze’s polymodal logic and its provable and

PA-unprovable properties

Lev Beklemishev
Steklov Mathematical Institute, Russia, and Utrecht

University

Giorgi Japaridze introduced his polymodal provability logic
GLP in 1986 and proved its arithmetical completeness w.r.t.
a natural provability semantics. GLP is known to be Kripke-
incomplete. Further modal logic properties of GLP were inves-
tigated by Konstantin Ignatiev who, in particular, established
Craig’s interpolation property and the fixed point property for
GLP. Ignatiev’s methods, however, relied on nontrivial assump-
tions unprovable in Peano arithmetic, such as reflection prin-
ciples and/or transfinite induction. He even conjectured that
such assumptions could actually be necessary. Later, GLP was
used (by the speaker) to give a consistency proof for Peano
arithmetic a la Gentzen, which made these conjectures more
intriguing.

We disprove Ignatiev’s conjecture in that we show that a
great deal of results on GLP can be obtained by methods for-
malizable in elementary arithmetic. (Part of this work is done
jointly with J. Joosten and M. Vervoort.) However, we also
present a modal-logical property of GLP which is unprovable
in Peano arithmetic. We also give a novel complete generalized
Kripke semantics for GLP.

8



Reasoning with causal statements:

A proto-logic of counterfactuals

Philippe Besnard
IRIT, Toulouse, France

We are here concerned with specifying a logic for reasoning
from causal statements. At first sight, a logic of counterfactuals
seems a good choice for the following reason. According to the
famous counterfactual analysis of causation, an event c causes
an event e iff there is a series of events E1,...,En such that: if
c had not occurred, E1 would not have occurred; if E1 had
not occurred, E2 would not have occurred; ... and if En had
not occurred, e would not have occurred. Indeed, this was the
motivation for David Lewis to define his logics of counterfactual
in the first place.

We discuss why such a logic is not quite right when it comes
to formalizing inferences from causal statements. We propose a
very weak logic to conform with the cases discussed, suggesting
a couple of ways to improve it and stating what the major
obstacle to extending it to a full-fledged logic of causation is.
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Engineering Modal Logics for Reasoning about

Agency, Time, and Obligation

Jan Broersen
Utrecht University, the Netherlands

Two central concepts showing up in many definitions for
(software) agents, are autonomy and pro-activity. Autonomy
of agents can be described as being able to act in violation
with given obligations. Pro-activity can be described as the
ability to base decisions about what to do on considerations
about the future. So, by definition, or at least by some defini-
tions, reasoning about time and obligation is central to what it
means to be an agent. We argue that for the use of temporal
deontic logics as knowledge representation languages, the no-
tion of deadline is of crucial importance. We show that there
are many possible semantics for deadlines, which is partially
due to a variety of possible semantics for the notion of control.
The notions of time, obligation and control are closely related,
since, if agent’s temporal obligations are about things they do
not control, they will not have any influence on the decisions
they make. In stead of having separate logics for each possible
semantics, we study how to define each semantics as a reduc-
tion to ATL (alternating time temporal logic). This has many
advantages. We can use the logical machinery of ATL (axioma-
tization, model checking algorithms), to do reasoning. We can
check properties of deadline logics by translating and proving
them in ATL. This activity of checking the properties of ever
changing semantics and reductions can be described as a way
of engineering logics; hence the title of the talk.
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An algorithmic version of Blok’s theorem

Alexander Chagrov
Tver State University, Russia

A well-known Blok’s theorem [1, Theorem 10.59] states the
following:

Let L be a consistent normal modal logic, non-equal to the
minimal normal modal logic K. If L is union-splitting, then the
incompleteness degree of L is 1, otherwise the incompleteness
degree of L equals continuum.

Recall that here the incompleteness degree of a logic L is
the cardinality of the set of all normal modal logics having the
same Kripke frames as L. So we can interpret Blok’s theorem
as a criterion for coincidence of logics with the same Kripke
frames.

The problem of coincidence (or equivalently, non-
coincidence) of logics is quite common in logical investigations.
For example, consistency of a logic is equivalent to its non-
coincidence with the inconsistent logic; derivability of a formula
ϕ in a logic L is the problem of coincidence L =? L ⊕ ϕ. The
problem of axiomatization of a certain logic, the problem of
independence of a given axiom system etc. are also within this
area.

In the case when only finite axiomatizations and respec-
tively, finitely axiomatizable logics, are considered (only above
K, in this talk), the coincidence problem becomes algorithmic.
For example, the problem of derivability in a logic L is exactly
the decidability problem. It is also worth noting that from the
algorithmic point of view, it is sufficient to consider logics with
a single extra axiom above K. For example, we can understand
algorithmically the problems of inconsistency and coincidence
with K (for a given formula ϕ) as follows: K⊕ϕ =? K⊕⊥ and
respectively, K ⊕ ϕ =? K ⊕ >. Note that the first problem is
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decidable by Makinson’s theorem [1, Theorem 17.2], the second
problem is decidable due to the decidability of K.

Theorem. Let L be a consistent normal modal logic non-
equal to the minimal normal modal logic K. Then the problem
(with parameter ϕ) K ⊕ ϕ =? L is decidable iff L is union-
splitting.
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Algorithmic problems in semantics of Visser’s

formal propositional logic

Lilia Chagrova
Tver State University, Russia

Joint work with Chagrov A.V.

The logic FPL (so-called fixed point logic) was introduced
by A. Visser in [2] as a rather natural deductive calculus. It
has the same language as intuitionistic propositional logic Int

and it can be embedded into Gödel – Löb provability modal
logic GL by the well-known translation which embeds Int into
S4: the operator 2 is added to (only!) atomic formulas and
implications. The semantics of FPL introduced in [2] is similar
to the (finite) Kripke semantics for Int; frames are now finite
strict orders (so unlike the case of Int, irreflexivity is postu-
lated), and all other details of the definitions are the same.
Thus frames of the logic FPL (as structures) are exactly the
finite frames of GL; the class of these frames is denoted by
FSO.

In the talk algorithmic problems for FSO are considered,
analogous to those studied in [1] for the case of the finite Kripke
semantics for GL. Although in both cases the problems look
similar, their solutions are different. In particular, in the se-
mantics for FPL there is no difference between the global and
the local truth, but for Int these notions are non-equivalent.
Another feature is that “negative” algorithmic results for FPL
probably cannot be obtained for formulas with small number of
variables. The talk discusses these similarities/non-similarities
in detail. Some results on finite-variable fragments of modal
logics from [1] are also strengthened. Here are two examples.

Theorem. The logical consequence relation “a formula ψ
is valid in all FSO-frames validating a formula ϕ” is undecid-
able in the case GL, and in the case FPL. It is sufficient to
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consider one-variable formulas in the first case and two-variable
formulas in the second case.

Theorem. First-order definability of formulas over the
class FSO is undecidable in the case of GL, and in the case
FPL. It is sufficient to consider one-variable formulas in the
first case and two-variable formulas in the second case.

References

[1] A.V.Chagrov, L.A.Chagrova. Algorithmic problems con-
cerning first-order definability of modal formulas on the class
of all finite frames. Studia Logica, 1995, v. 55, No 3, p. 421 –
448.
[2] A.Visser. A propositional logic with explicit fixed points.
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Towards algorithmic correspondence and

completeness in modal logic

Valentin Goranko
University of Witwatersrand, Johannesburg

Joint work with Willem Conradie and Dimiter Vakarelov

Correspondence and completeness are key topics of the
model theory of modal logic. A celebrated general result re-
lating these two concepts for a large syntactic class of modal
formulae is Sahlqvist’s theorem. Sahlqvist’s approach to prov-
ing first-order definability and canonicity of modal formulae
was paralleled and further developed by van Benthem into the
substitution method.

Proving first-order definability of modal formulae amounts
to elimination of second-order quantifiers. Two algorithms have
been developed and implemented for elimination of predicate
quantifiers in second-order logic: SCAN, based on a constraint
resolution procedure, and DLS, based on a logical equivalence
established by Ackermann.

In this talk I will introduce a new algorithm, SQEMA, for
computing first-order equivalents, and at the same time prov-
ing canonicity, of modal formulae. Like DLS, it uses (a modal
version of) Ackermann’s lemma, but unlike both SCAN and
DLS it works directly on modal formulae and thus avoids in-
troduction of Skolem functions and the subsequent problem of
unskolemization. If successful, the algorithm produces a lo-
cally equivalent pure formula in a temporal (reversive) exten-
sion with nominals of the input language.

In return for being specialized, SQEMA is more transparent
and flexible, easier to use and extend, less dependent on the
syntactic shape of the formulae, and apparently has a wider
scope of applicability on modal formulae than either of the
others.

15



In this talk I will present the core algorithm and illustrate
it with some examples. I will then discuss prove its correctness
and show that it succeed not only on all Sahlqvist formulae,
but also on the larger class of inductive formulae, introduced
by Goranko and Vakarelov.

Since all formulae on which SQEMA succeeds are provably
canonical, we have thus introduced a purely algorithmic ap-
proach to proving completeness via canonicity in modal logic
and, in particular, established what we believe to be the most
general completeness result in modal logic so far.
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A decidable modal logic that is undecidable on

finite frames

I. A. Gorbunov
Tver State Agricultural Academy, Rusiia

In the fields of Computer Science and Artificial Intelligence
there is a natural question: how different can be properties of
finite and infinite structures? A well-known result of this kind is
Trahtenbrot’s theorem stating that the logic of all finite models
of classical first-order logic is not recursively enumerable. But
many problems remain open in this area.

In particular, consider the following property. A logic ( or a
theory) L is called finitely decidable if the logic (resp., theory)
of all its finite models is decidable; otherwise L is called finitely
undecidable.

No examples of decidable logics and theories that are finitely
undecidable have been known until recently. Apparently, the
first example of a first-order (equational) decidable theory that
is finitely undecidable, was described by J. Jeong [1].

In the talk we give an example of a normal modal logic with
the same properties:

Theorem. In NExtGL there exists a decidable logic that is
finitely undecidable.

The proof of this theorem essentially uses Zakharyaschev’s
canonical formulas (see [2]).

References

[1] J. Jeong. A decidable variety that is finitely undecidable. The
Journal of Symbolic Logic, 1999, vol. 64, no. 2, pp. 651–677.
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Programming modal tableaux systems

Andreas Herzig
IRIT, Toulouse, France

We define formal tools for the definition of tableaux systems for
modal logics. First we present a high-level declarative programming
language based on graph rewriting rules together with control con-
structs for defining strategies of application of these rules. This allows
us to make explicit and rigorous the usually implicit and/or opera-
tional notions of rule application and strategy. Secondly, this allows
us to state general termination theorems for two classes of strate-
gies. These results cover almost all basic modal logics such as K,
T, S4, KB4, and even LTL and PDL. Our framework provides the
theoretical basis for our generic tableau theorem prover LoTREC.
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Set theory with modality

Valery Khakhanian
Moscow State University of railway communications, Russia

Let ECT be the assumption that all ”rules” are recursive. The
result of M.Beeson and A. Scedrov [1] is IZF+ECT 6` KSL (the the-
orem about a continuity of effective operators: for HA this theorem
was proved by Ceitin and by Kreisel, Lacombe and Shoenfield).
The method of Beeson and Scedrov is fp-realizability for HA, which
”lifts” to set theory level. Here the authors used intermediate set
theory with modality. This set theory was not further investigated
and the aim of my report is to draw the attention to the theme: high
formal systems with modal underlying logic.
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Formulas, corresponding to diagrams

Stanislav Kikot
Lomonosov Moscow State University, Russia

Many first-order properties are illustrated with pictures, see ta-
ble.

transitivity density

1

1

2 2

1

1

2 2

commutativity Church−Rosser’s
property

seriality commutativity

Our goal is to formalise the notion of a diagram, then assign a
first-order formula to a diagram, and investigate properties of these
formulas in the modal context.

A diagram is a quadruple D =< W,B,P, r >, where W is a
finite set of worlds, B and P are binary relations on W , and r ∈W .
Relation B corresponds to black, or bold, arrows, and P corresponds
to dashed, or white, arrows. We call a point x ∈ W black if there
is an non-oriented path from r to x consisting of black arrows, all
other points are called white. Let WB = {x|x is black } = {r =
x0, x1, . . . , xn}. The white points are y1, . . . , ym.

A diagram is correct if the following conditions hold:
(1) for any black point x there is unique oriented path joining r and
x (i.e. (W,B) is a tree with root r);
(2) for any white point y there is a black point x such that there is a
path, consisting of white arrows joining y and x;
(3) (minimality) if we delete any white arrow, then the new first-order
property is non-equivalent to the old one.

Henceforth we consider only correct diagrams. To each point
x ∈ W we assign a variable vx. To every diagram D we assign a
first-order formula ED with a single free variable vr in the language
with a single binary relation R:

ED = ∀vx1
. . . ∀vxn








∧

xBy

vxRvy



 → ∃vy1
. . . ∃vym




∧

xPy

vxRvy







 .
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In the above conjunctions the variables x and y run over W . Note
that the formula ED is guarded (cf. [1]).

Now consider the basic modal language.
Theorem 1. The first-order condition with a correct diagram is
localy definable in the basic modal language iff the corresponding
diagram does not have non-oriented cycles consisting of white arrows
and white points. Moreover, if the diagram is definable, it is definable
by a canonical formula.

Now consider the case when the root r is the only black point of
the diagram ( so-called strongly existential formulas). Let C be the
class of all pairs (F, r) consisting of a rooted frame and its root, such
that F |= ED(r). L(C) denotes the set of modal formulas φ such that
F, r |= φ for all (F, r) ∈ C. Note that L(C) is not a normal modal
logic since it is not closed under Generalization. Nevertheless we can
propose an infinite axiomatisation for L(C), even for the case when
the diagram is not modally definable.
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Modal products and dynamic topological logics

Roman Kontchakov
King’s College London, UK

Joint work David Gabelaia, Boris Konev, Agi Kurucz, Frank

Wolter and Michael Zakharyaschev

In this paper, we present our recent results on products of ‘tran-
sitive’ modal logics with constant and expanding domains. We use
these results - together with the developed techniques - to investigate
the computational behaviour of dynamic topological logics introduced
in 1997 by Artemov, Davoren, Kremer, Mints, and Nerode.

Our first result - a solution to a well known open problem - shows
that the product of two (Kripke complete) ‘transitive’ modal logics
with frames of arbitrary finite or infinite depth can never be decidable,
with the complexity ranging from r.e. to non-r.e., and even worse. As
a consequence, we give the first known examples of Kripke incomplete
commutators of Kripke complete logics.

Then we show that - unlike full products of ‘transitive’ modal
logics - their ‘expanding domain’ relativisations can be decidable,
though not in primitive recursive time. This is true, in particular,
of product logics determined by product frames one component of
which is a finite linear order or a finite transitive tree and the other
is a transitive tree or a partial (quasi- or linear) order. However,
if we allow the first component to be isomorphic to (N,¡) then the
logic becomes undecidable, yet recursively enumerable whenever the
second component contains only finite frames. The proofs are based
on Kruskal’s tree theorem and a reduction of various reachability
problems for lossy channel systems.

Finally, we apply the results above in the framework of dynamic
topological logics (DTLs). Roughly, we obtain the following land-
scape. DTLs over various natural dynamical topological systems with
homeomorphisms are usually not recursively enumerable, even if we
allow only finitely many iterations. DTLs over models with continu-
ous mappings and finitely many iterations become decidable, but not
in primitive recursive time. DTLs over arbitrary Aleksandrov spaces
and continuous mappings are again undecidable (though possibly ax-
iomatisable).
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We also briefly discuss the impact of a third dimension by showing
that first-order intuitionistic logic with two variables is undecidable.
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Extensions of multidimensional successor logics

A.G. Kravtsov
Lomonosov Moscow State University, Russia

Modal logic SL (Tomorrow, or Successor Logic) was introduced
by E.Lemmon and D.Scott (1965) and K.Segerberg (1967); all exten-
sions of this logic were described by A. A. Muchnik [1]. Muchnik’s
theorem was generalized by Segerberg for all extensions of KAlt1
(the logic of partial functions) [4].

Later polymodal versions of SL were introduced and system-
atic study of their extensions (logics with functional modalities) was
started. However this class is too large: it contains undecidable modal
logics of rather simple form; moreover, as shown in [3, Section 9.4] a
reasonable classification of this class cannot be obtained.

However an interesting subclass of functional polymodal logics are
those, in which all modalities commute. These logics are extensions
of multidimensional successor logics, i.e. of products SLn described
in [2, Section 14]:

SLn := [SL,SL, . . . ,SL]
︸ ︷︷ ︸

n

.

For this subclass several rather strong results can be proved:

Theorem.

(1) All extensions of SLn are finitely axiomatisable.

(2) All extensions of SLn are decidable and, moreover, the de-
ducibility problem for them is decidable.

(3) All extensions of SLn have the f.m.p.

(4) If Λ ⊇ SLn and Λ is a logic of a single cone, then for any
Kripke-complete polymodal logic L, Λ and L are product-
matching.

(5) for L = Km the converse of (4) holds , i.e. if a consistent
Λ ⊇ SLn and Km are product-matching, then Λ is a logic of
a single cone.
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Explicit modal logics of single-conclusion proof
systems

Vladimir Krupski
Lomonosov Moscow State University, Russia

Joint work with Sergei Artemov and Nikolai Krupski

Explicit modal logics, also known as logics of proofs, provide high
level symbolic description of proofs as objects in a classical logic en-
vironment. Such logics may be regarded as user friendly interfaces
for reasoning about proofs. In this talk we will deal with explicit
modal logics corresponding to the most common type of proof sys-
tems, single-conclusion proof predicates.

Two approaches are considered. The first one is based on the
unification technique. It leads to the extension of the language by
reference constructions of the form “the formula that is proven by
t” combined with pattern matching. The resulting logic FLPext is
decidable and provides a complete admissibility test for arithmetical
inference rules specified by schemes in the language of FLPext.

The second approach involves rigid typing and leads to a system
RCL→ that is a reflexive extension of Curry’s combinatory logic CL→.
In this system for each proof term t a formula F , for which the formula
“t proves F ” is well-formed, is unique. Well-formness of a formula
in RCL→ can be tested in polynomial time. The derivability problem
for RCL→ is PSPACE-complete.
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Topological modal logic with the difference
modality

AndreyKudinov
Lomonosov Moscow State University, Russia

The basic language used in topological modal logic is well known
and dates back to McKinsey – Tarski [1]. It has a single modal
connective 2 interpreted in topological spaces as the interior oper-
ator. But this language does not have much expressive power. So
we add difference modality [6=] and consider the bimodal language
ML(2, [6=]), which happens to be more expressive. The semantics
for [6=] is standard: a formula [6=]A is true at point x iff A is true at
all points y such that y 6= x. The universal modality is expressible in
an obvious way: [∀]A = [6=]A ∧A.

Our basic logic S4D is the fusion of S4 for 2 and DL (Difference
Logic) for [6=] plus [∀]p→ 2p (see [2]).

We also consider the following extra axioms:

(AT1) [6=]p→ [6=]2p
(ADs) [6=]p→ 3p
(AC) [∀](2p ∨ 2¬p) → [∀]p ∨ [∀]¬p
(AE1) [6=]p ∧ ¬p ∧ 2(p→ 2q ∨ 2¬q) → 2(p→ q) ∨ 2(p→ ¬q)

Lemma 1. Let X be a topological space. Then
(1) X |= AT1 iff X is a T1-space;
(2) X |= DS iff X is dense-in-itself;
(3) X |= AC iff X is connected. [3]

Definition 2. A topological space is called locally connected if every
neighborhood of any point contains a connected sub-neighborhood.
A locally connected T1-space is called locally 1-connected if the com-
plement of a point in every its connected open subspace is also con-
nected.
Lemma 3. Let X be a locally connected T1-space. Then
X |= AE1 iff X is locally 1-connected.

Consider the following modal logics:
S4DT1S := S4D +AT1 +ADs.
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S4DEC := S4DT1S +AC +AE1.

Theorem 4. S4DT1S and S4DEC have the FMP.

Theorem 5. (1) S4D is the logic of all topological spaces.
(2) S4DT1S is the logic of Cantor’s space.
(3) S4DEC is the logic of R

n for any n ≥ 2.

Open questions: (1) find the logic of R;
(2) Is S4DT1 = S4D + AT1 complete in topological semantics?
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The Modal Logic of Agency

John-Jules Ch. Meyer
Utrecht University, the Netherlands

Although there had already been done quite some work on the
logic of action in philosophical logic, the interest in cognitive science
and artificial intelligence for intelligent or cognitive agents and their
behaviour that has developed over the last 15 years, has increased
the logical investigation of agency even further. In particular, it ap-
peared that modal logic could be fruitfully employed to describe and
specify the behaviour of cognitive agents using modal operators for
the mental attitudes of those agents, such as knowledge, belief, desire,
intention, goal, commitment, etc.

The seminal works in this area are those of Cohen & Levesque
and Rao & Georgeff. Both try to formalize in modal logic the philo-
sophical theory of Bratman about the role of intentions in human
decision-making and planning. In order to describe the behaviour
of agents Cohen & Levesque and Rao & Georgeff use a temporal
logic framework, on top of which they put modal operators for the
agent’s mental attitudes like belief, desire and intention (BDI). (The
former authors employ a linear-time setting whereas the latter use a
branching-time setting.) We ourselves have proposed a logic of action
rather than a logic of time to describe / specify agents, viz. dynamic
logic, on which we put several other modal operators dealing with the
mental attitudes. Recently I’ve been able to extend this framework
to one for describing cognitive aspects of agents beyond rationality
(BDI), viz. emotional behaviour.
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A game semantics for intuitionistic propositional
logic

Ilya Mezhirov
Lomonosov Moscow State University, Russia

For every intuitionistic propositional formula F we construct a
game GF between Proponent (P) and Opponent (O) as described
below.

Game field. A game field is the syntax tree of F . Identical sub-
trees can be merged (turning the tree into a dag); the game outcome
is not affected.

Stones. Both players have stones of their color (say, white for P,
black for O). Each vertex has a room for one stone to be placed on
it. In order to make a move, a player places a stone of his color onto
a vacant vertex. Once placed, a stone remains in its vertex forever.

Publishing. Another kind of move is available to O: he may
“publish” a variable. This means simply saying, for instance, “I pub-
lish p”. Each variable may be published only once.

Positions. A position is a tuple (PV,PS,OS), where PV is the
set of published variables, PS is the set of P’s stones (a set of vertices
carrying a P’s stone), and OS is the set of O’s stones. PS and OS
may not intersect. All three sets grow larger as the position develops.

Starting. The starting position is (∅, {root}, ∅), that is, P’s only
stone is in the root.

States. In any position, each vertex has a state, which can be 0
or 1. States are needed only to determine whose turn it is. A vacant
vertex is 0. An occupied variable is 1 iff the variable is published. An
occupied non-variable behaves according to its boolean function.

Turn. If P has a stone in state 0 but all O’s stones are in state
1, then it is P’s turn to move. Otherwise, it is O’s turn.

Who wins. Whoever has a turn but cannot make a move, loses.
The other player wins.

Example. This simple example shows playing p→ p. The small
digits mean states. States of vacant vertices are not shown (they are
always 0).
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Between the second and the third pictures, O publishes the vari-
able p. The fourth picture shows P winning: it’s O’s turn, but O

cannot make a move.

This game is a precise semantics for IPL:
Theorem. A propositional formula F is derivable in IPL iff P has
a winning strategy in GF .
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De Jongh’s Theorem for equality theories

Alexey Romanov
Lomonosov Moscow State University, Russia

Definition. Let T be a consistent intuitionistic first-order theory.
De Jongh’s theorem for T is the following property:

For any propositional formula A(p1, . . . , pn),
Int ` A(p1, . . . , pn) iff for all T -sentences B1, . . . , Bn, T `
A(B1, . . . , Bn).

Similarly, De Jongh’s uniform theorem is the following property:

There is a sequence of T -sentences B1, . . . , Bn, . . . such that for
any propositional formula A(p1, . . . , pn),
Int ` A(p1, . . . , pn) iff for all T -sentences B1, . . . , Bn, T `
A(B1, . . . , Bn).

These properties were first established for the intuitionistic arith-
metic HA ([1]) and most work in this area concerns extensions of HA.
A survey of these results can be found in [3].

Our results are about De Jongh’s theorem for theories of equality
as defined below:

Definition. A consistent intuitionistic first-order theory with equal-
ity without predicate symbols, function symbols, or constants is called
a theory of equality.

In particular, the minimal theory of equality IntEq has no non-
logical axioms, the theory of normal equality IntNormEq has the
axiom ∀x∀y (¬¬x = y → x = y), and the theory of decidable equality
IntDecEq has the axiom ∀x∀y (x = y ∨ ¬x = y).

Theorem 1. De Jongh’s theorem holds for all theories between
IntEq and IntDecEq.

This is proven essentially following Smorińsky’s proof from [2] for
arithmetic. There is also a negative result:

Theorem 2. De Jongh’s uniform theorem does not hold for the
theory of normal equality.
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Evidence-based knowledge for S5

N. M. Rubtsova
Lomonosov Moscow State University, Russia

The Logic of Evidence-based Knowledge was proposed by S.N.
Artemov in [1]. This is a multi-agent logic of knowledge enriched by
evidence assertions of the form t :ϕ where t is an evidence term. The
knowledge of an agent is axiomatized by a modal logic L (where L

may be T, or S4, or S5). The evidence-based knowledge operator is
described by the logic of proofs LP (see [2]). The resulting systems
LnLP have a Kripke-style semantics, for which the corresponding
completeness theorems are established. It is also known that the
forgetful projection (replacing all evidences by a uniform modality J)
transforms a logic L = T or S4 into LnS4.

We introduce the multi-agent logics of evidence-based knowledge
S4nLP(S5) and S5nLP(S5), in which the evidence component cor-
responds to an S5-modality. The language of S4nLP is extended by
the new unary operation ”?” (negative evidence checker).

The axioms and rules of S4nLP(S5) are those of S4nLP plus
the new axiom:

¬ (t :ϕ) → ?t : (¬ t :ϕ).

For this logic we define Kripke-style models and prove
the completeness theorem. A model is a structure M =
(W,R1, . . . , Rn, R, E ,
), where W 6= ∅ is a set of states, Ri, R are
reflexive and transitive accessibility relations on W . An evidence
function E is a mapping from states and evidence terms to sets of
formulas. It is monotonic (uRv implies E(u, t) ⊆ E(v, t)) and respects
operations on evidence terms. 
 is a satisfiability relation between
states and sentence variables. Satisfiability of formulas is defined in
a usual way with the only new clause: u 
 [[t]]ϕ iff ϕ ∈ E(u, t). We
require that ϕ ∈ E(u, t) implies v 
 ϕ for all v ∈W with uRv.

Theorem. S4nLP(S5) ` ϕ iff ϕ holds in all S4nLP(S5)-models.

In the case of S5nLP(S5) the knowledge of every agent is de-
scribed by the modal logic S5 and the evidence part is the same as
in S4nLP(S5). Accessibility relations of corresponding Kripke-style
models are reflexive, transitive and symmetric. A similar soundness
and completeness theorem holds for S5nLP(S5).
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Almost periodic sequences

Andrey Rumjantsev
Lomonosov Moscow State University, Russia

Definition. A binary sequence u is called almost periodic if for
any subword a there is a number n such that any subword b of u of
length n contains the subword a.

Theorem. For any number α there exist a number n and an
almost periodic sequence such that every its subword of length m ≥ n
has Kolmogorov complexity not less than mα.
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Complexity of the two-variable fragment of
intuitionistic propositional logic

M.N.Rybakov
Tver State University, Russia

It is well known that for many standard propositional logics the
decision problem is PSPACE-complete. Note that proofs of PSPACE-
completeness of non-classical logics usually involve infinitely many
variables. However as mentioned in [2], there is a certain interest in
studying complexity of finite-variable fragments of Int and other non-
classical logics — as soon as in most applications deal with formulas
built from a finite set of variables.

For a propositional logic L and a natural number n, L(n) denotes
the n-variable fragment of L. It is known [1, 3] that the decision
problem is PSPACE-complete for K(0), K4(0), S4(1), T(1), GL(1),
Grz(1) and is in P for Int(1) (cf. [4]). So far the complexity of Int(2)
has been an open problem (see Problem 18.4 in [2]).

Theorem. Let L be a logic such that Int⊆L⊆ Int+¬p∨¬¬p.
Then the decision problem for L(2) is PSPACE-hard.

As a corollary we obtain that in the language with two variables
the following logics are PSPACE-hard: (1) all intermediate logics
axiomatized by one-variable formulas (except for Cl), (2) all inter-
mediate logics axiomatized by implication free formulas (except for
Cl), (3) Kreisel–Putnam’s logic KP, (4) Medvedev’s logic ML, and
others.
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RCC-relations and relativistic time

Ilya Shapirovsky
Institute for Information Transmission Problems,

Moscow, Russia

Joint work with Valentin Shehtman

We discuss the relationship between modal logic of regions and
temporal logic of relativity. Informally, the main idea is that re-
gions in n-dimensional space can be considered as points in (n+ 1)-
dimensional spacetime. This correspondence allows us to regard re-
lations of Region Connection Calculus (RCC) as relativistic relations
(and vice versa).

An outline of completeness results in relativistic modal logic can
be found in [2]. For the described logics the finite axiom systems
were presented; moreover, they have the finite model property and
are PSPACE-complete. Due to the proposed correspondence, these
results can be interpreted for logics of various region structures in R

n

(e.g. balls, rectangles, connected or convex regular sets, and others).
Conversely, results on logic of regions can be reformulated for

relativistic logics. For example, there is a number of “negative” re-
sults for logics of regions (e.g. [1]): rather expressive systems turn
out to be undecidable (or even not recursively enumerable). The
proposed method provides the same results for logic of relevant rela-
tivistic structures.

References

[1] C. Lutz and F. Wolter. Modal logics of topological relations.
Advances in Modal Logics, pp. 249-263. Manchester, 2004
[2] I. Shapirovsky, V. Shehtman. Modal logics of regions and
Minkowski spacetime. In: Selected Papers from the 3rd Moscow-
Vienna Workshop, Journal of Logic and Computation 2005 15(4):559-
574.

39



Spatial modal logics and information types

Valentin Shehtman
Institute for Information Transmission Problems,

Moscow, Russia

In this talk we consider three main approaches to spatial modal
logics: point-based geometrical approach, topological approach,
region-based approach. For each of these types of modal logics we
discuss main results and open problems.

We also describe a link between region-based modal logics and
“informational semantics” of intuitionistic propositional logic. This
semantics was proposed by Ju.T. Medvedev [1] as a possible develop-
ment of A.N. Kolmogorov’s (1933) viewpoint on intuitionistic logic
as a logic of problems. The original Medvedev’s definition regard-
ing “information” as a non-empty set of integers gives a sound, but
incomplete semantics. But completeness can be restored if “informa-
tion” is a certain kind of region in space (e.g., a disk on a plane, or an
interval on a line) [2]. This also leads us to a spatial interpretation
of extra modal connectives in intuitionistic logic, like difference or
universal modality.
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Multisource algorithmic information theory

Alexander Shen
Institute for Information Transmission Problems,

Moscow, Russia

Informally speaking, Kolmogorov complexity of a string x is a
number of bits needed to transmit x through a communication chan-
nel (from source to destination). One can consider a more elaborated
network with several sources and several destinations.

Formally, let (V,E) be a directed acyclic graph. Assume that for
some vertices v ∈ V an incoming string i(v) is fixed, for some vertices
v ∈ V an outgoing string o(v) is fixed, and for each edge e ∈ E the
capacity c(e), which is a non-negative integer or +∞, is given. Then
we say that an information transmission request is defined.

We say that an information transmission request is c-feasible for
some c > 0 if there exists a function t that maps each edge e into
a string t(e) (a string “transmitted along e”) of length at most c(e)
such that for each vertex v the conditional complexity

K (outgoing information at v | incoming information at v)

does not exceed c. By outgoing information we mean a tuple of strings
that contains all t(e) for all outgoing edges e and the string o(v) if it
is defined for v. Similarly, incoming information is a tuple of strings
t(e) for all incoming edges plus i(v) (if defined).

We consider the following class of problems: for a given graph find
the necessary or sufficient conditions for the information transmission
request to be c-feasible in terms of conditional complexity of incoming
and outgoing strings and capacities. As usual, we are interested in
asymptotic results where c = O(log n) and all strings have length at
most n (as n→ ∞). It turns out that

• many notions and results in algorithmic information theory can
be reformulated in this language (examples: conditional information,
common information, Muchnik theorem on conditional codes, Ben-
nett – Gacs – Li – Vitanyi – Zurek theorem);

• there is a natural necessary condition of Ford – Falkerson type
(information flow through any cut should not exceed its total capac-
ity) that turns out to be sufficient for some graphs (including the
graph corresponding to Muchnik theorem and all graphs with only
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one incoming string and many outgoing strings identical to the in-
coming one);

• in general this condition is not sufficient (Muchnik – Ro-
mashchenko results on common information, M. Vyugin – Muchnik –
Ustinov results on irreducible programs, minimal sufficient statistics).

However, it is still unclear, what makes graphs different in this
respect and how to decide (looking at the graph) whether the infor-
mation flow condition is sufficient for this graph.
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On non-axiomatizability of superintuitionistic
predicate logics of dually well-founded Kripke

frames

Dmitrij Skvortsov
All-Russian Institute of Scientific and Technical Information

(VINITI), Moscow, Russia

We consider superintuitionistic predicate logics (without equal-
ity and function symbols), i.e., extensions of intuitionistic predicate
logic QH closed under Modus Ponens, Universalization and (pred-
icate) Substitution. For these logics we use the standard predicate
Kripke semantics. For a class Y of posets let L(Y ) (or Lc(Y )) be
the predicate logic characterized by the class of all Kripke frames
(or, respectively, all Kripke frames with constant domains) with the
structures of possible worlds from Y .

LetWF ∗ be the class of all dually well-founded posets, i.e., posets
without infinite ascending chains. Let Pn be the class of all posets of
height ≤ n (for n ∈ ω, n > 0) and let P∞ =

⋃

n

Pn be the class of all

posets of finite height. Clearly, P∞ ⊂WF ∗.

Theorem. Let Y be a class of rooted posets, Y ⊆WF ∗.
(1) If Y 6⊆ P∞, then the logics L(Y ) and Lc(Y ) are Π1

1
-hard.

(2) If ∀n (Y 6⊆ Pn), then the logics L(Y ) and Lc(Y ) are not recursively
axiomatizable.

Corollary. (1) The logics L(WF ∗) and Lc(WF ∗) are Π1

1
-hard.

(2) The logics L(P∞) and Lc(P∞) are not RE.

Note that the logics L(Pn) and Lc(Pn) are finitely (and thus, re-
cursively) axiomatizable (Ono [1] and Yokota [3]). Hence the logics
L(P∞) =

⋂

n

L(Pn) and Lc(P∞) =
⋂

n

Lc(Pn) are Π0

2
-arithmetical.

By the way, note that the logic of the class of all well-founded
Kripke frames (i.e., without infinite descending chains) obviously
equals QH.

The proof of Theorem uses a modification of the method devel-
oped for the proof of results from [2].
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Definability over the class of all partitions

Tinko Tinchev
Sophia Univeristy, Bulgaria

Joint work with Ph. Balbiani

Study of correspondence between modal logic and first-order
logic, when they are interpreted in relational structures, i.e. Kripke
frames of the form F = (W,R), has been extensive since the 1960s.
One of the main topics in this investigation is correlation between
expressive power of modal and classical first-order languages. So the
major work in correspondence theory has been focused on modal de-
finability of first-order sentences and first-order definability of modal
formulas. The most interesting is a series of results on modal and
first-order definability proved by Chagrova in the 1990s. In particu-
lar, Chagrova’s work implies that it is undecidable whether an arbi-
trary first-order sentence has a modal correspondent within the class
of all relational structures. The other way round, it is undecidable
whether an arbitrary modal formula has a first-order correspondent
within the class of all relational structures.

With these basic results mentioned, we can now confine ourselves
to partitions, i.e. Kripke frames F = (W,R), where R is reflexive,
symmetric, and transitive. They are considered as frames for three
modal languages: the standard one, the modal language with the uni-
versal modality and so-called ‘δ-language’ (a fragment of the modal
language with the universal modality). For each of these languages
we give an appropriate model characterization of first-order formu-
las having a modal correspondent. Using these characterizations we
prove algorithmic decidability of modal definability over the class of
partitions and determine its complexity. For all three modal lan-
guages every modal formula has a first-order correspondent over the
class of all partitions.
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Operations on proofs and labels

Tatiana Yavorskaya (Sidon)
Lomonosov Moscow State University, Russia

Logic of proofs LP introduced by S. Artemov in 1995 describes
properties of the proof predicate “t is a proof of F” in the propo-
sitional language extended by atoms of the form t : F . Proof are
represented by terms constructed by three elementary recursive op-
erations on proofs.

We consider the language of LP as a convenient framework, in
which operations on proofs can be described and studied. To make
the language more expressive, we introduce the additional storage
predicate with the intended interpretation “x is a label for F”. It can
play the role of syntax encoding, so it is useful for specification of
operations that require formula arguments.

We study operations on proofs and labels that can be specified in
the extended language. We give a formal definition for a specification
of an operation on proofs and labels. This definition is purely seman-
tical. The syntactical criteria whether a formula is a specification is
proven.

For an arbitrary finite set of operations F the logic LPS(F) is
defined. We provide LPS(F) with symbolic and arithmetical se-
mantics. The main result is the uniform completeness theorem for
a wide class of these logics with respect to both types of semantics.
As a corollary we obtain decidability of these logics and complexity
bounds.
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On Kripke-style semantics for the provability logic
with quantifiers on proofs

Rostislav Yavorskiy
Steklov Mathematical Institute, Moscow, Russia

We consider first order extensions of the logic of proofs, in which
we do not change the set of atomic formulas, but allow for quantifi-
cation over proof variables. In this language the modal provability
operator 2A is expressed by the formula 2A 
 ∃x(x : A). One can
also state the operational properties of provability by the correspond-
ing ∀∃-sentences, e.g.

(·) ∀xy∃z(x : (A→ B) → (y : A→ z : B)),
(!) ∀x∃y(x : A→ y : x : A).

We can also formulate further valid principles such as

negative introspection ∀x∃y(¬(x : A) → y : ¬(x : A)),
reflection rule ∀x∃y(x : 2A→ y : A)

Some non-axiomatizability results for different versions of prov-
ability logic with quantifiers on proofs are found in [1]. However,
there is a hope that the logic corresponding to the standard Gödel
proof predicate is decidable. Some partial positive results in this di-
rection are presented in [2, 3]. The solution of this problem is closely
related to the task of finding adequate Kripke-style semantics for this
kind of logics.
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