

Конспект семинара учебно-исследовательских работ школьников по математике

Наталья Михайловна НЕТРУСОВА учитель математики школы-интерната «Интеллектуал» г. Москвы natnetint@gmail.com

Алексей Иванович СГИБНЕВ учитель математики школы-интерната «Интеллектуал» г. Москвы sgibnev@mccme.ru

На девятом заседании семинара (22.09.2009) *Г.Б. Шабат* сделал доклад на тему **«Основания аффинной планиметрии»**.

Определения и обозначения

Введём обозначения: $\mathbb{P} = \{\text{точки}\}, \mathbb{L} = \{\text{прямыe}\} \subset sub(\mathbb{P})$.

Пусть $l, m \in \mathbb{L}$. Введём понятие параллельности:

$$l \parallel m : \Leftrightarrow l \cap m = \emptyset$$

и понятие параллельности в широком смысле:

$$l \parallel m : \Leftrightarrow \begin{bmatrix} l \parallel m \\ l = m \end{bmatrix}$$

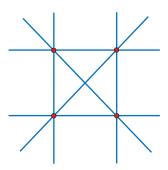
Упражнение. Доказать, что $\| -$ отношение эквивалентности (в отличие от $\|$).

Пусть для множеств ${\Bbb P}$ и ${\Bbb L}$ выполняются I и V постулаты Евклида. Введём три операции и обозначения для них:

- 1) прямую, проходящую через точки P и Q, обозначим $P^{\bullet}Q$ (должно быть $P \neq Q$);
- 2) точку пересечения двух прямых l и m обозначим $l_{ullet} m$ (должно быть l
 ot | m);
- 3) прямую, проходящую через точку P параллельно прямой $\it l$, обозначим $\it P\, \it l\, \it l$.

Упражнение. Перечислить и осознать свойства этого формализма, например: $P^{\bullet}Q = Q^{\bullet}P, \ P \in P^{\bullet}Q, \ и \ \text{т.д.}$

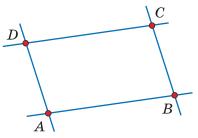
Пример 1:



 \mathbb{L} здесь — это все возможные двухэлементные подмножества \mathbb{P} . (Диагонали здесь не пересекаются, так как в центре точки нет!)

Параллелограммы

Определение. Четвёрку точек с определённым циклическим порядком называют параллелограммом, если обе пары противоположных сторон параллельны: $A^*B \parallel C^*D$, $B^*C \parallel A^*D$.



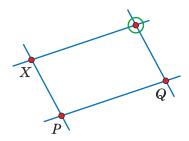
В примере 1 много параллелограммов!

Упражнение. Перечислите все параллелограммы, содержащиеся в примере 1. Проверьте, что во всех $A^{\bullet}C \parallel B^{\bullet}D$ (диагонали параллельны).

Упражнение. Докажите, что если диагонали пересекаются в каком-то параллелограмме, то пересекаются и во всех параллелограммах.

Движения

Движения — это язык геометрии. Параллелограммы дают запас движений плоскости. Для точек $P,Q\in \mathbb{P}$ определим сдвиг $P^{\to}Q$: $P\to Q$.

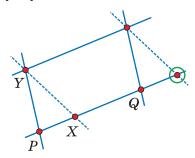


В виде формулы сдвиг $P \to Q$, применённый к точке X, выглядит так: $[P \to Q](X) := [X!(P \to Q)]_{\bullet}[Q!(P \to X)].$

(Подразумевается, что $P \neq Q, X \notin P^{\bullet}Q$.)

Упражнение. Почему прямые $X!(P^{\bullet}Q)$ и $Q!(P^{\bullet}X)$ пересекаются?

А что делать, если $X \in P^{\bullet}Q$? Рассмотрим произвольную точку $Y \in \mathbb{P} \setminus (P^{\bullet}Q)$. Построим сдвиг согласно рисунку:

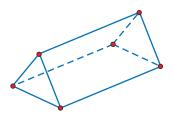


Упражнения.

- 1. Запишите $[P^{\rightarrow}Q](X)$ в виде выражения от P, Q, X, Y.
- 2. Проверьте экспериментально в «Живой геометрии», что $[P \to Q](X)$ не зависит от точки Y, т.е. что операция сдвига определена корректно.
 - 3. Докажите это преобразованием выражения.

Пункты 2 и 3 можно сформулировать в виде **Леммы о палатках:**

Если два четырёхугольника на рисунке – параллелограммы, то и третий – тоже параллелограмм.



Лемма о палатке НЕ следует из постулатов I и V. Она эквивалентна дезарговости плоскости¹.

Проект. Предъявите недезаргову плоскость.

В заключение заметим, что у Евклида около 10 аксиом, а у нас – всего 2. Поэтому это очень благодарная тема для того, чтобы научиться ясно видеть основы и выводить из них следствия.

На десятом заседании семинара (20.10.2009) *Г.Б. Шабат* сделал доклад на тему **«Проективная плоскость»**.

1. Связь с теорией перспективы.

Перед рисующим человечеством давно стояла задача плоского изображения пространственного предмета. Решали её по-разному. Например, русские иконописцы придерживались правила «Что дальше – то выше» – и это нормальное соглашение.

¹ См. конспект семинара, опубликованный в № 3 журнала «Полином» за 2009 г.

2. Связь проективной плоскости со сферической геометрией.

Проективная плоскость $\mathbb{P}_2(\mathbb{K}) := \{$ прямые в \mathbb{K} через $(0, 0, 0)\}$, где \mathbb{K} – поле (тело). Таким образом, $\mathbb{P}_2(\mathbb{K}) := \mathbb{S}^2$ с условием, что антиподальные точки отождествляются.

Сферическая геометрия очень богата. В школьном курсе она представлена только в виде геометрии трёхгранных углов.

Проект. Перенести стандартные факты геометрии треугольника на сферическую геометрию.

Эксперименты в сферической геометрии трудны, а на плоскости Лобачевского – легки. Так вот, оказывается, всё равно, какой геометрией заниматься. Геометрия с положительной и отрицательной кривизной едина. А вот в геометрии нулевой кривизны есть вырождения (например, на евклидовой плоскости существуют подобные, но не равные треугольники).

3. Связь проективной и аффинной геометрий.

 $\mathbb{P}_2 := \mathbb{A}^2 \bigcup l_{\infty}^*$ – множество точек аффинной плоскости + множество точек «бесконечной прямой», где $\bigcup l_{\infty}^*$ означает непересекающееся объединение, а l_{∞} – «бесконечная прямая», т.е. $l_{\infty} := \mathbb{L}/|||$ – каждая точка l_{∞} задаёт направление.

 $\mathbb{P}_{\!_{2}}^{\,*} \coloneqq \mathbb{L} \bigcup '\{l_{\!_{\infty}}\} -$ множество прямых аффинной плоскости + бесконечная прямая.

Давайте доопределим операции $l_{\bullet}m$ и $P^{\bullet}Q$.

 $\forall l_{l}m \in \mathbb{P}_{2}^{*} (l \neq m) \ l_{\bullet}m \in \mathbb{P}_{2}$:

- если $l, m \in \mathbb{L}$ и $l \cap m$, то $l_{\bullet}m :=$ точка пересечения этих прямых (определяется как в аффинной плоскости);
 - если $l, m \in \mathbb{L}$ и $l \parallel m$, то $l_{\bullet}m :=$ соответствующая точка прямой l_{∞} ;
 - если $m \in \mathbb{L}$, а $l = l_{\scriptscriptstyle \infty}$, то $l_{\scriptscriptstyle ullet} m \coloneqq$ соответствующая m точка прямой $l_{\scriptscriptstyle \infty}$.

Заметим, что на проективной плоскости эффект параллельности преодолён: теперь любые две прямые имеют общую точку (если они параллельны – то лежащую на «бесконечной прямой»).

 $\forall P, Q \in \mathbb{P}_2 \ (P \neq Q) \ P^{\bullet}Q \in \mathbb{P}_2^*$:

- если $P,Q \in \mathbb{A}_2$, то $P^{\bullet}Q :=$ прямая, проходящая через эти точки (определяется как в аффинной плоскости);
- если $P \in \mathbb{A}_2$, а $Q \in l_{\infty}$, то $P^{\bullet}Q \coloneqq$ прямая, проходящая через точку P параллельно направлению, заданному точкой Q;
 - если P, $Q \in l_{\infty}$, то P• $Q \coloneqq l_{\infty}$.

Так строится переход от аффинной плоскости к проективной. Обратный переход осуществляется выбрасыванием произвольной прямой проективной плоскости (т.е. усложнением системы).

4. Аксиоматика.

Запишем аксиомы проективной плоскости:

$$\mathbb{P}_{2} \times \mathbb{P}_{2} \setminus \Delta \to \mathbb{P}_{2}^{*} : (P, Q) \to P^{\bullet}Q
\mathbb{P}_{2}^{*} \times \mathbb{P}_{2}^{*} \setminus \Delta \to \mathbb{P}_{2} : (l, m) \to l_{\bullet}m^{2}$$

Две последние строчки полностью симметричны друг другу. Чтобы подчеркнуть это равноправие, для отношения $P \in I$ ввели специальный термин «инцидентность». Тогда на естественном языке эти утверждения будут звучать так: «Для любых двух точек существует прямая, им инцидентная» и «Для любых двух прямых существует точка, им инцидентная». Заметим, что если поменять местами слова «точки» и «прямые» в первом утверждении, то получится второе, и наоборот. Если в любом верном утверждении на проективной плоскости поменять местами слова «точки» и «прямые», то также получится верное утверждение. Это называется принципом двойственности.

Пример (классический). Двойственность теорем Паскаля и Брианшона (см., например, Р. Курант, Г. Роббинс «Что такое математика?», М., 2004. С. 236):

Теорема Паскаля	Теорема Брианшона
Если вершины шестиугольника лежат поочерёдно на двух прямых, то точки пересечения противоположных сторон коллинеарны.	Если стороны шестиугольника проходят поочерёдно через две точки, то прямые, соединяющие противоположные вершины, конкуррентны.

Проект. Реализовать эту двойственность в геометрии, т.е. отыскать пары двойственных теорем.

Можно сказать, что на проективной плоскости есть всего одна аксиома – первый постулат Евклида + Принцип двойственности.

5. \mathbb{P}_{2}^{*} как группоид (категория, где все морфизмы обратимы).

Рассмотрим две прямые l и m и точку $P \notin l \cup m$. Произвольной точке $Q \in l$ сопоставим точку $m_{\bullet}(P^{\bullet}Q)$. Назовём полученное отображение отображением проектирования.

Задача «З в 3». Построить систему отображений, переводящих 3 данные точки прямой l в 3 данные точки прямой m. (Аналогичная задача «2 в 2» решается мгновенно.) Рассмотреть также эту задачу на одной прямой.

На одиннадцатом заседании семинара (17.11.2009) *Г.Б. Шабат* сделал доклад на тему **«Учение о поляре»**.

Принцип двойственности

Он имеет следующее литературное описание.

Слепой иностранец. Представьте, что на семинар по проективной геометрии попал слепой иностранец. Он не знает значения слов «точка» и «прямая», и не может их увидеть. Поэтому что из них что – он выбирает наугад. Но как бы он ни выбрал – все теоремы проективной геометрии будут читаться правильно!

 $^{^2}$ $\Delta := \{(P,P)\}$ — диагональ. То есть запись Δ в первой строчке означает, что $P \neq Q$, а во второй — что $l \neq m$.

Исходя из принципа двойственности, хочется построить отождествление между множеством точек \mathbb{P}_2 и множеством прямых \mathbb{P}_2^* .

Заметим, что множеству \mathbb{P}_2^* можно поставить в соответствие множество плоскостей, проходящих через точку (0, 0, 0). Тогда пересечение каждой из этих плоскостей с плоскостью z=1 соответствует прямой из \mathbb{P}_2^* , а плоскости z=0 соответствует бесконечная прямая. Точке из \mathbb{P}_2 сопоставим прямую, проходящую через эту точку и начало координат. Бесконечной точке соответствует прямая из плоскости z=0. (Подробнее см., например, Р. Курант, Г. Роббинс «Что такое математика?», М., 2004. С. 219–222.)

Тогда элементы ${f P}_{\!\scriptscriptstyle 2}$ и ${f P}_{\!\scriptscriptstyle 2}^{\,\scriptscriptstyle *}$ можно отождествить следующими способами.

- 1) Пусть есть метризация. Тогда есть и перпендикулярность. Отождествим плоскость и прямую, перпендикулярную ей, проходящие через начало координат. Получим отождествление прямой и точки на проективной плоскости.
- 2) Поляра. На проективной плоскости зафиксируем окружность. Пусть внутри окружности дана точка M. Построим соответствующую ей прямую следующим образом. Проведём прямую k через точку M, в точках пересечения её с окружностью проведём касательные. Они пересекаются в точке P. Теперь будем поворачивать прямую k. Геометрическим местом точек P окажется прямая её и сопоставим точке M (см. рис.).

Схема доказательства того, что получится именно прямая. Осуществим отображение, переводящее окружность в себя, а точку M – в её центр. В этом случае указанное построение приведёт к прямой – l_{∞} . Значит, и в общем случае получится прямая.

Вопрос: какая прямая соответствует точке P?

Следующий пункт также имеет отношение к отождествлению прямых и точек.

Где пересекаются все окружности?

Рассмотрим уравнение окружности $(x-a)^2+(y-b)^2=r^2$. Перепишем его в однородных координатах: $(x-az)^2+(y-bz)^2=r^2z^2$. Заметим, что этому уравнению при любых a, b, r удовлетворяют точки $(x, y, z)=(1; \pm i; 0)$. Это значит, что все окружности проходят через эти две точки.

Паскаль доказал, что любое коническое сечение определяется **пятью** точками. Так вот, окружность проходит через **две** точки (1; $\pm i$; 0) и через какие-то ещё **три** точки.

Проект. Как классифицировать планиметрические теоремы (общеизвестные и новые) – т.е. существуют ли они в проективной геометрии?

Это можно отслеживать как по явной формулировке, так и по доказательству (использование координатного метода). Например, теоремы о трёх медианах, о трёх высотах, о трёх биссектрисах — существуют, так как они являются частными случаями теоремы Чевы.