Решения.

- I. Каждая задача оценивалась в 10 баллов.
- **1.** (А. Шень. Вероятность: примеры и задачи. М.: МЦНМО, 2007)

Имеется по одному литру 5-ти, 10-ти и 15-ти процентных растворов соли. Какое наибольшее количество 8-ми процентного раствора соли можно составить, смешивая их?

Ответ:
$$2\frac{1}{7}$$
 литра.

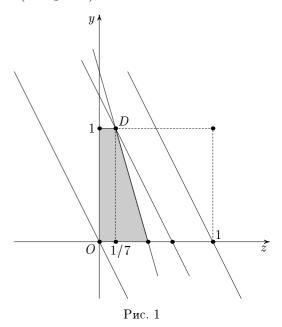
Решение. Первый способ. («среднее арифметическое»). Если смешать все имеющиеся растворы, то получится 3 литра 10-ти процентного раствора соли. Чтобы получить 8-ми процентный раствор, придется это количество уменьшать. При этом бесполезно уменьшать количество 5-ти процентного или 10-ти процентного растворов, так как от этого процентное содержание соли не уменьшится. Значит, надо уменьшить «вклад» 15-ти процентного раствора. Возьмем по 1 литру первых двух растворов и A литров третьего раствора, тогда, приравнивая объем соли до и после смешивания, получим: 0.05 + 0.1 + 0.15A = 0.08(1 + 1 + A). Следовательно, $A = \frac{1}{7}.$

Второй способ. («линейное программирование»). Пусть для приготовления 8-ми процентного раствора взято x, y и z литров 5-ти, 10-ти и 15-ти процентных растворов соответственно. Тогда выполняется равенство: 0,05x+0,1y+0,15z=0,08(x+y+z).

В условии задачи требуется, чтобы величина V==x+y+z принимала наибольшее возможное значение при условии, что каждая переменная принимает значения от 0 до 1 включительно.

Выразим x из полученного ранее равенства: $x=\frac{2y+7z}{3}$, тогда $V=\frac{5y+10z}{3}$. При этом, так как $0\leqslant \leqslant x\leqslant 1$, то $0\leqslant \frac{2y+7z}{3}\leqslant 1\Leftrightarrow -\frac{7}{2}z\leqslant y\leqslant -\frac{7}{2}z+\frac{3}{2}$. Учитывая, что $0\leqslant y\leqslant 1$ и $0\leqslant z\leqslant 1$, получим, что на координатной плоскости (z; y) пары значения z и y, удовлетворяющие записанным неравенствам, образуют заштрихованную часть квадрата (см. рис. 1). При этом точка D пересечения прямых $y=-\frac{7}{2}z+\frac{3}{2}$ и y=1 имеет координаты $\left(\frac{1}{7};1\right)$.

Выразим y через z и V: $y = -2z + \frac{3}{5}V$. На плоскости (z;y) это уравнение задает семейство параллель-



ных прямых. Нас интересуют те из них, которые имеют общие точки с заштрихованной трапецией и для которых параметр V принимает наибольшее значение из возможных. Это означает, что прямая $y = -2z + \frac{3}{5}V$ должна проходить как можно выше, то есть через точку D. Тогда $z=rac{1}{7},\ y=1,\ v=rac{15}{7},\ x=1.$ Отметим, что оптимизационные задачи такого типа называются задачами линейного

программирования. Величина V в этом случае называется целевой функцией.

Критерии проверки.

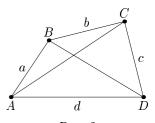
Полное обоснованное решение — 10 баллов.

Верный ответ получен, но не обосновано, почему 5-ти либо 10-ти процентный раствор надо использовать полностью — 7 баллов.

Верный ответ получен исходя из того, что и 5-ти, и 10-ти процентные растворы расходуются полностью, но ни то, ни другое не доказано — 4 балла.

Приведен только верный ответ — 1 балл.

2. (П.В. Сергеев) Древние египтяне вычисляли площадь выпуклого четырехугольника, длины сторон которого последовательно равны a, b, c и d, по формуле $S=\frac{a+c}{2}\cdot\frac{b+d}{2}$. Укажите все виды четырехугольников, для которых верна эта формула, и обоснуйте свой ответ.



Ответ: прямоугольники.

Решение. Рассмотрим произвольный выпуклый четырехугольник ABCD с заданными сторонами (см. рис. 2). Проведя диагональ AC, получим, что

$$S_{ABCD} = S_{ABC} + S_{ADC} = \frac{ab \sin \angle B + cd \sin \angle D}{2}.$$

Аналогично, проведя диагональ BD, получим, что

$$S_{ABCD} = S_{ABD} + S_{CBD} = \frac{ad \sin \angle A + bc \sin \angle C}{2}.$$

Следовательно,

$$2S_{ABCD} = \frac{ab\sin \angle B + bc\sin \angle C + cd\sin \angle D + ad\sin \angle A}{2}.$$

Из условия задачи следует, что $2S=\frac{ab+bc+cd+ad}{2}$. Учитывая, что $\forall \alpha \in (0;180^\circ) \sin \alpha \leqslant 1$, причем равенство достигается только при $\alpha=90^\circ$, получим, что $S_{ABCD}=S$ тогда и только тогда, когда все углы четырехугольника ABCD — прямые.

Существуют также другие способы решения, основанные на применении различных преобразований плоскости (параллельный перенос или осевая симметрия).

Критерии проверки.

Полное обоснованное решение — 10 баллов.

Приведено верное решение, но ответ дан в форме: «прямоугольник или квадрат» — 9 баллов. Приведен только верный ответ (в том числе на основании перебора частных случаев) — 1 балл.

- 3. (Б.А. Кордемский. Математика изучает случайности. М.: Просвещение, 1975)
- Тебе несомненно будет приятно получить у меня экземпляр редкой почтовой марки, сказал мне отец, но поставил условие: выиграть в шахматы подряд две партии из трех, играя поочередно с ним и с мамой по одной партии в день.
 - С кем мне играть первую партию: с тобой или с мамой?
 - Выбирай сам, ответил папа, хитро улыбаясь.

Какая последовательность игр: **папа** — **мама** — **папа** или **мама** — **папа** — **мама** дает мне большую вероятность «завоевать» марку для коллекции, если папа более сильный партнер, чем мама?

Ответ: большую вероятность дает последовательность папа — мама — папа.

Решение. Произведем подсчет, исходя из того, что результаты отдельных партий не зависят друг от друга. Пусть ребенок побеждает отца в отдельном поединке с вероятностью p, а мать — с вероятностью q, причем p < q. В варианте МПМ событие «выиграть подряд две партии» распадается на сумму двух событий: A — выиграть первые две партии, B — выиграть последние две партии. Используя независимость событий, получим: $P(A) = q \cdot p$; $P(B) = p \cdot q$; $P(AB) = q \cdot p \cdot q$ (вероятность выиграть все партии). Поэтому, искомая вероятность $P_1 = P(A+B) = P(A) + P(B) - P(AB) = 2pq - q^2p$.

Аналогично, в варианте ПМП вероятность $P_2 = 2pq - p^2q$. Так как $2pq - q^2p < 2pq - p^2q \Leftrightarrow \Leftrightarrow p^2q < q^2p \Leftrightarrow p < q$, то $P_1 < P_2$, то есть вариант ПМП предпочтительнее.

Получить ответ можно было также из следующих (не вполне строгих) рассуждений. Заметим, что для «завоевания» марки обязательно надо выиграть вторую партию, а это проще сделать, играя с мамой. Кроме того, в любом случае надо выиграть и у мамы, и у папы. Поскольку папа играет сильнее, то вероятность выиграть у него повысится, если играть с ним две партии, а не одну.

Критерии проверки.

Полное обоснованное решение — 10 баллов.

Задача не решена, но приведено неформальное пояснение того, почему вторую партию нужно играть с мамой или то, что написано курсивом — 2 балла.

 $\Pi puведен только ответ — 0 баллов.$

4. (Фольклор) Существует ли тетраэдр, высоты которого равны 3, 6, 8 и 24?

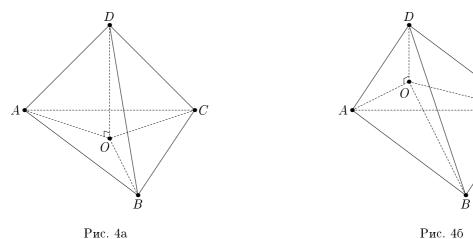
Ответ: нет, не существует.

Решение. Пусть такой тетраэдр существует и площади его граней, соответствующих заданным высотам, равны $S_1,\ S_2,\ S_3$ и S_4 . Так как объем тетраэдра вычисляется по формуле $V=\frac{1}{3}SH$, то $S_1=V,\ S_2=\frac{1}{2}V,\ S_3=\frac{3}{8}V,\ S_4=\frac{1}{8}V.$

Далее можно рассуждать различными способами.

Первый способ. Из полученных равенств следует, что $S_1 = S_2 + S_3 + S_4$. Это невозможно, так как в любом тетраэдре сумма площадей трех любых граней больше площади четвертой грани (пространственный аналог неравенства треугольника).

Действительно, если высота DO тетраэдра DABC проектируется внутрь основания ABC (см. рис. 4a), то $S_{ABC} = S_{AOB} + S_{BOC} + S_{COA} < S_{ADB} + S_{BDC} + S_{CDA}$, так как треугольники AOB, BOC и COA являются ортогональными проекциями боковых граней на плоскость основания. Если же точка O лежит на границе или вне треугольника ABC (см. рис. 46), то (по аналогичной причине) площадь основания меньше площади одной из боковых граней или суммы двух из них.



Второй способ. Пусть в этот тетраэдр вписана сфера радиуса r. Тогда объем тетраэдра можно вычислить по формуле $V=\frac{1}{3}r(S_1+S_2+S_3+S_4)$. Подставим в это равенство полученные значения площадей граней: $V=\frac{1}{3}r\cdot 2V$, то есть $r=\frac{3}{2}$. Следовательно, диаметр вписанной сферы равен 3, что невозможно, так как любая высота тетраэдра должна быть больше, чем диаметр вписанной сферы (в нашем случае одна из высот тетраэдра также равна 3).

Критерии проверки.

Полное обоснованное решение — 10 баллов.

Задача решена, но формула $S_{np} = S_{ep} \cdot \cos \varphi$ использована без указания какой угол φ имеется ввиду (тем самым, не учтен случай тупого или прямого двугранного угла при ребре основания) — 9 баллов.

Верный ответ и верный ход рассуждений, но не доказано, что сумма площадей трех граней тетраэдра больше площади четвертой грани — 7 баллов.

Верный ответ приведен на основании полученного равенства $S_1 = S_2 + S_3 + S_4$, но не указано и не обосновано, почему это равенство выполняться не может — 5 баллов.

Приведен только ответ (в том числе, со ссылкой на формулу для вычисления объема тетра-gdpa) — 0 баллов.

5. (*И.А. Кушнир*) Найдите все действительные корни уравнения $2x^3 - 6x + 5 = 0$.

Ответ:
$$-\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}\right)$$
.

Решение. Первый способ. Пусть $x=y+\frac{1}{y}$, где $y\neq 0$, тогда $x^3=\left(y+\frac{1}{y}\right)^3=y^3+3y+\frac{3}{y}+\frac{1}{y^3}=y^3+\frac{1}{y^3}+4\left(y+\frac{1}{y}\right)$. Подставляя это в данное уравнение, получим: $2y^3+\frac{2}{y^3}+6\left(y+\frac{1}{y}\right)-6\left(y+\frac{1}{y}\right)+5=0$, что при $y\neq 0$ равносильно уравнению $2y^6+5y^3+2=0$. Заменяя $y^3=z$, получим квадратное уравнение, корнями которого являются $z_1=-2$; $z_2=-\frac{1}{2}$. Следовательно, $y=-\sqrt[3]{2}$ или $y=-\sqrt[3]{\frac{1}{2}}$. Таким образом, $x=-\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{2}}\right)$.

Второй способ. Разделим обе части данного уравнения на 2, тогда $x^3-3x+2, 5=0 \Leftrightarrow x^3+2+0, 5-3x=0$. Разложим левую часть этого уравнения на множители, воспользовавшись тождеством $x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$, где $y=\sqrt[3]{2}$. Заметим, что $x^2+y^2+z^2\geqslant x+y+z$, причем равенство достигается тогда, и только тогда, когда x=y=z. Так как в данном случае это невозможно, то x+y+z=0, то есть $x=-\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{2}}\right)$.

Отметим, что, используя производную, можно сразу доказать, что данное уравнение имеет единственный действительный корень и этот корень отрицательный. Это даст возможность не рассматривать неравенство (во втором способе), а также может облегчить и сам поиск метода решения.

Критерии проверки.

Полное обоснованное решение — 10 баллов.

B остальных случаях (в том числе, приближенные решения, оценка количества корней уравнения и np.) — 0 баллов.

II. Методический блок

Каждое задание оценивалось в 10 баллов.

Тексты заданий, ответов и решений №6 и №7 взяты из математической литературы. Тем не менее, они могут содержать ошибки. Укажите эти ошибки (если они есть) и обоснуйте. Если приведено неверное решение, то приведите свое.

6. (Сборник задач для поступающих во втузы под. ред. М.И. Сканави, издание 6, глава 2, пример 7)

«Задание». Чему равна сумма выражений $\sqrt{24-t^2}$ и $\sqrt{8-t^2}$, если известно, что их разность равна 2 (значение переменной t находить не нужно)?

«Ответ»: 8.

«Решение». Согласно условию, $\sqrt{24-t^2}-\sqrt{8-t^2}=2$. Используя формулу $a+b=\frac{a^2-b^2}{a-b}$, получим: $\sqrt{24-t^2}+\sqrt{8-t^2}=\frac{24-8}{2}=8$.

Комментарий. Условие задачи некорректно. Действительно, при любых значениях t выполняются неравенства $24-t^2 \leqslant 24$ и $8-t^2 \leqslant 8$, следовательно, $\sqrt{24-t^2}+\sqrt{8-t^2} \leqslant \sqrt{24}+\sqrt{8} < 1$ < 5 + 3 = 8.

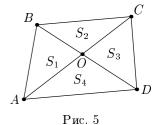
Критерии проверки.

Полное обоснование некорректности условия задачи — 10 баллов.

- 7. (Московские математические регаты. / Составители А.Д. Блинков, Е.С. Горская, В.М. Γ урович. — М.: МЦНМО, 2007. 11 класс, 1999/00 уч. год, 2.2)
- «Задание». Диагонали выпуклого четырехугольника ABCD пересекаются в точке O. Периметры треугольников AOB, BOC, COD и DOA равны между собой. Радиусы окружностей, вписанных в треугольники АОВ, ВОС и СОД равны соответственно 3, 4 и 6. Найдите радиус окружности, вписанной в треугольник DOA.

«Ответ»: 4,5.

«Решение». Обозначим площади четырех треугольников, указанных в условии, S_1 , S_2 , S_3 и S_4 (см. рис. 5), а радиусы вписанных в них кругов — r_1 , r_2 , r_3 и r_4 соответственно. Тогда, воспользовавшись формулой для вычисления площади треугольника: $S=0,5ab\sin\gamma$ и тождеством $\sin(180^{\circ} - \alpha) = \sin \alpha$, получим, что $S_1 \cdot S_3 = S_2 \cdot S_4$. С другой стороны, площадь треугольника может быть найдена как произведение его полупериметра и радиуса вписанной окружности. Так как, по условию, периметры всех четырех треугольников равны, то $r_4 = \frac{r_1 \cdot r_3}{r_2} = \frac{3 \cdot 6}{4} = 4, 5.$



Комментарий. Условие задачи некорректно, так как из равенства периметров четырех треугольников, указанных в условии задачи, следует, что исходный четырехугольник — ромб, тогда радиусы окружностей, вписанных в эти треугольники, должны быть равны. Докажем это.

Первый способ. Предположим сначала, что ABCD — не параллелограмм. Тогда, без ограничения общности, можно считать, что $OA \geqslant OC$ и $OB \geqslant OD$. Пусть точки A' и B' образы точек A и B при симметрии с центром O (см. рис. 6). Допустим, хотя бы одна из точек C или D не совпадает c вершинами A' или B' параллелограмма ABA'B'. Из условия задачи следует, что равны периметры треугольников A'OB' и COD, то есть OA' + OB' + A'B' = OC + OD + CD. Следовательно, A'C + B'D + A'B' = CD, что противоречит существованию четырехугольника A'CDB' (даже, когда он «вырождается» в треугольник).

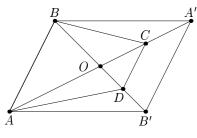


Рис. 6

Таким образом, ABCD — параллелограмм. Тогда из равенства периметров треугольников AOB и BOC следует, что AB = BC, то есть ABCD — ромб.

 $Bmopoŭ\ cnoco\delta$. Докажем сначала, что диагонали четырехугольника ABCD перпендикулярны. Предположим, что это не так. Без ограничения общности можно считать, что угол AOB — острый, тогда угол BOC — тупой (см. рис. 6). По следствию из теоремы косинусов: из треугольника AOB получим, что $AB^2 < OA^2 + OB^2$, а из треугольника BOC получим, что $BC^2 > OC^2 + OB^2$. Отсюда следует, что OC < OA.

Действительно, если $OC \geqslant OA$, то $BC^2 > OC^2 + OB^2 \geqslant OA^2 + OB^2 > AB^2$, то есть BC > AB, тогда периметры треугольников AOB и BOC равными быть не могут.

Проведя аналогичное рассуждение для треугольников AOD и COD, получим, что OC > OA. Полученное противоречие показывает, что исходное предположение неверно, то есть диагонали AC и BD перпендикулярны.

Из теоремы Пифагора следует, что если два прямоугольных треугольника с общим катетом имеют равные периметры, то такие треугольники равны. Таким образом, ABCD — ромб.

Критерии проверки.

Полное обоснование некорректности условия задачи — 10 баллов.

Указано, но не доказано, что из равенства периметров треугольников, перечисленных в условии, следует, что данный четырехугольник является ромбом — 3 балла.

 $Y_{\kappa a}$ зано, что условие задачи некорректно, но не объяснено, почему это так — 2 балла.

8. В контрольной работе для 10 класса было дано следующее задание: «Решите уравнение $\sin \alpha + \cos \alpha = 1$ ». Учитель получил пять различных решений, которые приведены ниже.

Оцените каждое из решений (верное оно или нет, какие есть ошибки и недочеты).

Решение Коли. Возведем обе части уравнения в квадрат, тогда $\sin^2 \alpha + 2 \sin \alpha \cos \alpha +$ $\cos^2 \alpha = 1$. Используя основное тригонометрическое тождество и формулу синуса двойного аргумента, получим: $\sin 2\alpha = 0$. Следовательно, $2\alpha = \pi n, \ n \in \mathbb{Z}$. Ответ: $\frac{\pi n}{2}, \ n \in \mathbb{Z}$.

Решение Леши. Воспользуемся формулами синуса и косинуса удвоенного аргумента и основным тригонометрическим тождеством: $2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}=\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}.$ Упрощая, получим однородное уравнение: $2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}=2\sin^2\frac{\alpha}{2}$. Разделим обе части на $2\sin^2\frac{\tilde{\alpha}}{2}$, тогда $\operatorname{ctg} \frac{\alpha}{2} = 1$. Следовательно, $\frac{\alpha}{2} = \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}$.

Otbet: $\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

Решение Миши. Воспользуемся формулами, выражающими синус и косинус через тангенс половинного аргумента: $\frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} + \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} = 1.$ Избавившись от знаменателей, получим:

 $2 \operatorname{tg} \frac{\alpha}{2} + 1 - \operatorname{tg}^2 \frac{\alpha}{2} = 1 + \operatorname{tg}^2 \frac{\alpha}{2}$, то есть, $2 \operatorname{tg} \frac{\alpha}{2} \left(1 - \operatorname{tg} \frac{\alpha}{2} \right) = 0$. Следовательно, $\operatorname{tg} \frac{\alpha}{2} = 0$ или $\operatorname{tg} \frac{\alpha}{2} = 1$. Таким образом, $\frac{\alpha}{2} = \pi n$, $n \in \mathbb{Z}$ или $\frac{\alpha}{2} = \frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$.

Ответ: $\alpha=2\pi n,\ n\in\mathbb{Z}$ или $\alpha=\frac{\pi}{2}+2\pi k,\ k\in\mathbb{Z}.$

Решение Наташи. Умножим обе части уравнения на $\frac{\sqrt{2}}{2}$, тогда $\cos \frac{\pi}{4} \cos \alpha + \sin \frac{\pi}{4} \sin \alpha =$ $\frac{\sqrt{2}}{2}$. Используя формулу косинуса разности, получим: $\cos\left(\alpha-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$. Следовательно, $\alpha-\frac{\pi}{4}=$ $\pm \frac{\pi}{4} + 2\pi k, \ k \in \mathbb{Z}.$

Ответ: $\alpha = 2\pi k$ и $\alpha = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$.

Решение Оли. Воспользуемся основным тригонометрическим тождеством: $\sin \alpha + \cos \alpha =$ $\sin^2 \alpha + \cos^2 \alpha$. Тогда $\sin \alpha (1 - \sin \alpha) + \cos \alpha (1 - \cos \alpha) = 0$. Используя условие $\sin \alpha + \cos \alpha = 1$, получим: $\sin \alpha \cos \alpha + \cos \alpha \sin \alpha = 0$, то есть $\sin 2\alpha = 0$. Таким образом, $2\alpha = \pi n$, $n \in \mathbb{Z}$.

Otbet: $\frac{\pi n}{2}$, $n \in \mathbb{Z}$.

Комментарий. Верный ответ получен только в решениях Миши и Наташи, причем и их решения не свободны от недостатков.

В решении Наташи неграмотно записан ответ: знак «и» здесь неуместен, так как обозначает пересечение множеств, а должно быть объединение.

Отдельно отметим, что подобным недочетом страдают некоторые учебники и задачники, которые не различают употребление союза «И» русского языка и знака «И» в математических высказываниях. С нашей точки зрения, грамотный учитель обязан это различать и обращать внимание своих учеников на правильное использование знаков «И» и «ИЛИ» в математике. При этом, мы отнюдь не призываем в каждом подобном случае снижать оценки ученикам.

В решении Миши: прежде чем использовать формулы, выражающие синус и косинус через тангенс половинного аргумента, необходимо проверить, что значения α , при которых $\operatorname{tg} \frac{\alpha}{2}$ не определен, не являются решениями исходного уравнения. Для $\alpha=\pi+2\pi m,\, m\in\mathbb{Z}$, это действительно выполняется, поэтому указанная ошибка не повлияла на ответ.

В решении Коли: получены посторонние корни, так как при возведении в квадрат вместо равносильного уравнения получается уравнение—следствие.

В решении Оли тоже получены посторонние корни, так как выполненная замена также приводит к уравнению-следствию.

В решении Леши потеряна часть корней при решении однородного уравнения: значения переменной, для которых $\sin \frac{\alpha}{2}$ равен 0, также являются корнями исходного уравнения.

Критерии проверки.

Проверка участником конкурса каждого из пяти ученических решений оценивалась в 2 балла. В каждом случае: 1 балл давался за правильную оценку решения (верное оно или нет) и еще 1 балл за правильное обоснование характера допущенной ошибки или недочета.

9. В контрольной работе для 10 класса было дано следующее задание: «Найдите уравнение касательной к графику функции $f(x)=\frac{1}{x-1}$ в точке $x_0=0$ ». Один из учеников предложил следующее краткое решение: « $f(x)=\frac{1}{x-1}=-\frac{1}{1-x}=-1-x-x^2-x^3-\ldots$. Следовательно, уравнение касательной к графику в точке $x_0=0$ таково: y=-x-1».

Прокомментируйте это решение: если Вы считаете его верным, то восполните пробелы, написав необходимые обоснования и пояснения, а если считаете неверным, то укажите ошибки.

Комментарий. Решение ученика — верное. Восполним пробелы.

Рассмотрим функцию $f(x)=\frac{1}{x-1}$ на интервале (-1;1), в который входит точка $x_0=0$. На этом интервале выражение $-\frac{1}{1-x}$ можно рассматривать как сумму бесконечно убывающей геометрической прогрессии с первым членом равным -1 и знаменателем x, то есть $-\frac{1}{1-x}=$ $=-1-x-x^2-x^3-\ldots$ (*). Касательная к графику функции f(x) в точке $x_0=0$, задается такой линейной функцией, которая отличается от функции f(x) на бесконечно малую величину, имеющую более высокий порядок, чем x. Из разложения (*) следует, что это функция имеет вид y=-x-1.

Критерии проверки.

Yказано, что решение ученика верное и восполнены все пробелы — $10\,$ баллов.

Решение ученика оценено верно и основные пробелы восполнены, но не указано, что в приведенном разложении в ряд нелинейные слагаемые являются бесконечно малыми величинами более высокого порядка, чем линейная часть — 8 баллов.

Указано только, что разложение получено из формулы суммы бесконечно убывающей геометрической прогрессии — 1 балл.

10.~В традициях российского образования принято определять трапецию как четырехугольник, у которого две стороны параллельны, а две другие — не параллельны. Во многих зарубежных учебниках трапеция определяется как четырехугольник, имеющий две параллельные стороны.

Сравните эти определения с точки зрения удобства изучения видов четырехугольников и их свойств, выделив достоинства и недостатки.

Комментарий. Отметим, что во всех случаях, когда определения различаются, достоинства одного определения становятся недостатками другого и наоборот. Укажем сначала отличительные свойства «зарубежного» подхода от «российского».

- 1) Трапеция является «жесткой» фигурой она определяется длинами сторон (с указанием их порядка и выделением оснований), а параллелограмм своими сторонами не задается.
- 2) Становится неясным понятие «равнобокой (равнобедренной) трапеции», для которой надо либо вводить отдельное (и громоздкое в этом случае) определение, либо становятся неверными, например, такие утверждения: «В равнобокой трапеции углы при основании равны», «В равнобокой трапеции диагонали равны», «Равнобокая трапеция является вписанным четырехугольником», и пр.
- 3) Частично теряет смысл понятие «оснований трапеции», важное для некоторых формул и теорем.
- 4) Поддерживается характерная «вложенность» классов четырёхугольников: во множество трапеций входят параллелограммы, во множество параллелограммов прямоугольники и ромбы, и т. д.
- 5) Многие теоремы, справедливые как для параллелограмма, так и для «собственно трапеции», можно объединить, например, теорема о средней линии, формула для вычисления площади, один из признаков трапеции (ABCD является трапецией, если диагонали AC и BD пересекаются в точке O так, что равны площади треугольников AOB и COD), и пр. Не случайно, в российских задачниках можно нередко прочесть: «. . . Докажите, что ABCD трапеция или параллелограмм».
- 6) Либо появляется исключение для замечательного свойства трапеции (точка пересечения диагоналей, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой), либо придется вводить проективные понятия бесконечно удаленных точек и прямых.
- 7) Становятся неясными законы изображения фигур в стереометрии: так как все параллелограммы аффинно эквивалентны, то при параллельном проектировании параллелограмм (и все его частные случаи) следует изображать в виде произвольного параллелограмма. Но произвольные трапеции аффинно не эквиваленты: параллельной проекцией трапеции является трапеция с таким же отношением оснований.

Теперь попробуем оценить эти отличия.

- 1) Это, на наш взгляд, один из существенных аргументов «в защиту отечественного подхода».
- 2) Это также представляется большим минусом «зарубежного подхода». Равнобокая трапеция, именно такая, как мы себе её обычно представляем, то есть в виде «башенки, стоящей на большем основании», является простой и очень популярной геометрической фигурой (как в задачах, так и в практике). Нам кажется важным, чтобы ученики были с ней знакомы и хорошо знали её свойства и признаки.
- 3) И это скорее минус «зарубежного подхода», поскольку основания трапеции часто бывает необходимо четко выделить.
- 4) Это скорее достоинство «зарубежного» подхода, так как изучать понятия методом «расширения класса» удобно, и это свойственно многим математическим структурам: например, движения расширяются до подобий, затем до аффинных и проективных преобразований; натуральные числа расширяются до целых, затем до рациональных, действительных и комплексных чисел, и пр.
- 5) Также скорее достоинство «зарубежного» подхода, хотя надо отметить, что иногда доказательство этих общих теорем может распадаться на две части: отдельно для параллелограмма и отдельно для «собственно трапеции».

- 6) Это может быть как достоинством, так и недостатком: всё зависит от того, насколько считается возможным знакомить учащихся с понятиями проективной геометрии. Для массовой российской школы, как нам кажется, это вряд ли приемлемо, а для математических классов такой подход может оказаться полезным.
- 7) Это скорее недостаток «зарубежного» подхода, но, справедливости ради, отметим, что на решение большинства стереометрических задач не повлияет, если изображать трапецию в виде произвольной трапеции.

Кроме того, как справедливо указали некоторые участники конкурса:

- достоинство «российском подхода» с точки зрения методики: проще сначала изучить свойства параллелограмма, которые доказываются, как правило, исходя из равенства треугольников, и научиться их применять, а затем уже переходить к свойствам трапеции, которые зачастую связаны с подобием треугольников;
- при «зарубежном» подходе проще вводить термин «криволинейная трапеция» в курсе математического анализа, так как прямоугольник (и даже объединение «криволинейных треугольников») также является криволинейной трапецией.

Критерии проверки.

Cmpyкmypupoванность ответа на вопрос и четкость изложения оценивалась от <math>0 до 2 баллов.

Указание каждой из замеченных особенностей того или иного подхода также оценивалось от 0 до 2 баллов.

Баллы суммировались, но сумма не могла превысить 10 баллов.

Отдельно отметим, что это задание совсем не предполагало априорного «ура-патриотического подхода».

Вариант подготовили:

 $A.\mathcal{A}$. Блинков, Ю.А. Блинков, Е.Б. Гладкова, Е.С. Горская, В.М. Гуровиц, А.В. Иванищук, А.Г. Мякишев, И.Б. Писаренко, Л.С. Тимакова, А.В. Хачатурян, П.В. Чулков, Д.Э. Шноль, И.В. Яшенко.