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The main purpose of the research is the study of motivic integrals and their relation to invariants
of plane curve singularities, knots and links, in particular, to the invariant related to knot (and link)
homology theories. It is supposed to enlarge the relation between the motivic Poincare series of plane
curve singularities and the Heegard-Floer homology of corresponding algebraic knots.

1 Framework

1.1 Motivic integration

Motivic integration was introduced in 1995 by M. Kontsevich, and later developed by J. Denef and
F. Loeser in a series of articles (see, e.g. [4]).

The idea of motivic integration has several sources. First, it is a deep generalization of the
integration with respect to the Euler characteristic ([19], [11]). Second, it is tightly related to the
p-adic integration arising in number theory and arithmetic geometry. Third, the idea of motivic
integration is close to the open string theory in mathematical physics, as integration is taken over
the space of (formal) germs of maps from complex line to a given target space. Since complex line is
2-dimensional, its image may be considered as a (singular) worksheet of an open string.

The novelty of the motivic integration is the set of values of the motivic measure, which is is a
certain completion of the localization of the Grothendieck ring of varieties by the class of the affine
line. The motivic measure can be defined on different infinite-dimensional functional spaces which
can be approximated by the finite-dimensional jet spaces. The algebra of measurable sets is, roughly
speaking, generated by the sets defined by a finite collection of semi-algebraic equations on jets.

One can define, for example, a motivic measure on the set of arcs on a given variety (formal maps
from a complex line to variety). For arc spaces, the main tool of study is the change of variables
formula ([4]) that provides a possibility of replacement of a variety by its resolution. A remarkable
example of usage of the change of variables formula is the proof of the Batyrev’s conjecture ([1]):
birationally equivalent Calabi-Yau smooth varieties have equal Hodge numbers.

1.2 Poincare series and Alexander polynomial

In a series of articles (e.g. [2]), A. Campillo, F. Delgado and S. Gusein-Zade proved that the Alexander
polynomial of the link of a plane curve singularity is related to the generating function arising in a
purely algebraic setup.

Let C = ∪r
i=1Ci be a germ of a plane curve, let γi : (C, 0) → (Ci, 0) be uniformizations of its

components. If f ∈ O = OC2,0 is a germ of a function on (C2, 0), we define vi(f) = Ord0f(γi(t)),
and the Poincare series of the curve C is defined ([2]) as the integral with respect to the Euler
characteristic

PC(t1, . . . , tr) =

∫
PO

tv1
1 · . . . · trvrdχ, (1)

where PO denotes the projectivization of O as a vector space.
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Let ∆C(t1, . . . , tn) denote the Alexander polynomial of the link of C. The theorem of Campillo,
Delgado and Gusein-Zade says that if r = 1, then (1 − t)PC(t) = ∆C(t), and if r > 1, then
PC(t1, . . . , tr) = ∆C(t1, . . . , tr).

In [3] there was proposed the following generalization of the Poincare series. One can naturally
define a motivic measure on the projectivization of the space of functions, and consider the following
motivic integral, generalizing (1):

PC
g (t1, . . . , tr) =

∫
PO

tv1
1 · . . . · trvrdµ. (2)

If r = 1, one can deduce Pg(t) from P (t). If r is greater than 1, the situation becomes more
complicated: the motivic Poincare series is still determined by the ordinary one, but the explicit
algorithm of its computation is unclear.

1.3 Heegard-Floer homology

In a series of articles (e.g. [14]),[15]) P. Ozsvath and Z. Szabo constructed the so-called Heegard-
Floer knot homology theory. It assigns to any knot or link in a 3-dimensional manifold a filtered
chain complex, such that the Euler characteristic of the adjoined (bi)graded complex coincides with
the Alexander polynomial. This homology theory has several remarkable topological properties: the
maximal index of the filtration level with non-zero homology coincides with the knot genus ([16]),
that is, the minimal genus of a Seifert surface for the knot in S3. Furthermore, a knot is fibered if
and only if this top homology group is one-dimensional ([13]).

Later a general combinatorial model for the Heegard-Floer complex was developed ([12]), but
its size seems to make the structure of the homology unclear: for example, for a trefoil knot it has
5!=120 generators.

For all algebraic knots (for example, torus ones) Ozsvath and Szabo managed ([17]) to calculate
explicitly the Heegard-Floer homology, namely, it can be reconstructed by a purely combinatorial
procedure from the Alexander polynomial.

1.4 Unification of knot homology theories

Several knot homology theories different from Heegard-Floer homology were constructed.
M. Khovanov ([9]) constructed a homology theory categorifying the Jones polynomial. Later Kho-

vanov and Rozansky gave a unified construction ([10]) of the homology theories categorifying sl(N)
colored Jones polynomials, and another homology theory categorifying the HOMFLY polynomial.

Although the constructions of Khovanov and Rozansky are combinatorial and use only knot
diagrams, the explicit Poincare polynomials of the corresponding homology groups even for torus
knots are known only in some particular cases.

To get all these theories together, Dunfield, Gukov and Rasmussen ([5]) conjectured that they are
parts, or specializations of a following unified picture. Namely, for a given knot K they conjectured
existence of a triply-graded knot homology theory Hi,j,k(K) with the following properties:

• Euler characteristic. Consider the Poincare polynomial P(K)(a, q, t) =
∑

aiqjtk dimHi,j,k.
Then P(K)(a, q,−1) equals the value of the HOMFLY polynomial of the knot K.

• Differentials. There exist a set of anti-commuting differentials dj for j ∈ Z acting in H∗(K).
For N > 0, dN has triple degree (−2, 2N,−1), d0 has degree (−2, 0,−3) and for N < 0 dN has
degree (−2, 2N,−1 + 2N).

• Symmetry. There exists a natural involution φ such that φdN = d−Nφ for all N ∈ Z.
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For N ≥ 0, the homology of dN is supposed to be tightly related to the sl(N) Khovanov-Rozansky
homology. Namely, let HN

p,k(K) = ⊕iN+j=pHi,j,k(K). It was conjectured in [5] that there exists a
homology theory with above properties such that for all N > 0 the homology of (HN

∗ (K), dN) is
isomorphic to the sl(N) Khovanov-Rozansky homology. For N = 0, (H0

∗(K), d0) is isomorphic to the
Heegard-Floer knot homology.

2 Author’s results related to the project

In [23] and [22] a set of functional equations for motivic integrals was developed and studied. These
integrals have no explicit closed formula, while the change of variables formula provides natural func-
tional equations for them. These equations can be used for a recursive calculation of the coefficients
in the power series decomposition of the integral with respect to the parameters. The resulting equa-
tions can be used in proof of some unexpected properties on an integral, for example, its symmetry
under an inversion of the parameters ([23]).

One of the integrals related to the Milnor number over the space of arcs on the complex plane
is studied in [23] and [22]. Such an integral naturally arises in the following context. A function on
(C2, 0) defines a possibly reducible germ of a curve. One can parametrize each irreducible component
of it and hence consider a map from the set of functions to the set of unordered tuples of arcs modulo
automorphisms of (C, 0). It turns out that the motivic measures on these two functional spaces are
related by some factor ([24]). This factor has a clear geometric meaning - it is expressed through the
number of self-intersections of a generic deformation on a curve, which for irreducible curves is half
of the Milnor number.

The results of [25] are the most important for the current project. The explicit algorithm for
calculation of the motivic Poincare series is presented in terms of the geometry of the embedded
resolution.

The reduced motivic Poincare series P
C

g is defined as

P
C

g (t1, . . . , tr) = (1− qt1) · . . . · (1− qtr) · PC
g (t1, . . . , tr).

In [25] it is proved that the reduced motivic Poincare series satisfies the following properties.

1. Polynomiality. P g(t1, . . . , tn; q) is a polynomial in t1, . . . , tn and q. A bound for its degree in
t1, . . . , tn is given.

2. Reduction to the Alexander polynomial. If n = 1, then P g(t; q = 1) = ∆(t), where ∆
denotes the Alexander polynomial of the link of the corresponding plane curve singularity. If
n > 1, then P g(t1, . . . , tn; q = 1) = ∆(t1, . . . , tn) ·

∏n
i=1(1− ti).

3. Forgetting components. Let C be a curve with n components, and C1 be an irreducible

curve. Then P
C∪C1

g (t1, . . . , tn, tn+1 = 1) = (1− q)P
C

g (t1, . . . , tn). If C has only one component,

then P
C

g (t = 1) = 1.

4. Symmetry. Let µα be the Milnor number of Cα, (Cα ◦Cβ) is the intersection index of Cα ◦Cβ,
µ(C) is the Milnor number of C. Let

lα = µα +
∑
β 6=α

(Cα ◦ Cβ), δ(C) = (µ(C) + r − 1)/2.

It is known that the Alexander polynomial is symmetric in the sense that

∆(t−1
1 , . . . , t−1

n ) =
∏

t−lα
α ·∆(t1, . . . , tn).

3



A generalization of this identity is proved. Namely,

P g(
1

qt1
, . . . ,

1

qtr
) = q−δ(C)

∏
α

t−lα
α · P g(t1, . . . , tr).

5. Relation to the knot homology. For irreducible curves it is proved that P g(t) can be related
by a simple procedure with the Poincare polynomial of the Heegard-Floer knot homologies
constructed by P. Ozsvath and Z. Szabo.

3 Research plan

The project is devoted to the study of the conjectural triply graded homology from [5] for algebraic
knots, the algebraic and combinatorial structure of the latter one and its relation to the motivic
integration.

The simplest set of examples are torus knots. The expressions for the Alexander polynomials of
torus knots are well known, it determines Heegard-Floer homology, but the homology structure is
more involved and less understood. In the Heegard-Floer theory, clear combinatorial construction of
the complex quasi-isomorphic to the Heegard-Floer complex is still missing for generic torus knots.
Furthermore, the uniform description of the Khovanov homology for torus knots is also missing, and
the current research is supposed to fill these gaps.

In [5] it has been remarked that there is a natural limit of the triply graded homology of (n,m)
torus knots at m → ∞. It turns out that the limit homology of (n,∞) knots is isomorphic as a
vector space to the polynomial algebra of n− 1 even generators x2, . . . , xn and n− 1 odd generators
ξ2, . . . , ξn. Their degrees are equal to

deg(xk) = (0, 2k, 2k − 2), deg(ξk) = (2, 2k − 2, 2k − 1).

The homology of a (n, m) knot is a subcomplex of the homology of (n,∞) knot, it inherits
the ”level structure” from the (n,∞) homology where the level of a monomial is its degree in odd
variables. It turns out that the dimension of the level k subspace in the homology of (m, n) knot has a
clear combinatorial description. For example, the dimension of the level 0 in the homology of (n, n+1)
torus knot is equal to nth Catalan number. More precisely, the arising combinatorial structures are
related to the (q, t)-analogues of Catalan numbers constructed in a series of articles of M. Haiman,
A. Garsia and J. Haglund (e.g [8],[6],[7]) in terms of the Macdonald polynomials. The structure of
the operators acting in the superhomology is similar to the A∞ structure in Heegard-Floer homology
and spectral sequences related to it.

The research will be focused on the following problems:

1. To explain the relation of the motivic Poincare series for reducible plane curve singularities
with the Heegard-Floer homology of algebraic links.

2. To get an algebraic description of the triply graded homology of torus knots in terms of the
generators xk, ξk and derive a model for the Heegard-Floer homology of torus knots.

3. To extend the above combinatorial construction to iterated torus knots and algebraic knots.

4. To relate the combinatorial constructions of triply graded homology with motivic integrals over
appropriate functional spaces.

5. To relate the combinatorial construction of Heegard-Floer homology for algebraic knots with
the topological Heegard-Floer complex.
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