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During the last century many efforts were devoted to classifying Frobenius endomor-
phisms of matrices, i.e., transformations preserving certain matrix invariants. The first
result in this area was obtained in 1896 by Frobenius [20], who has characterized all bi-
jective linear transformations on the space of complex matrices M, (C) that preserve the
determinant function and proved that such transformations are necessary of the form

T(X)=PXQ foral X € M,(C) or T(X)=PX'Q for all X € M,(C).

In 1925 Schur [48] generalized Frobenius theorem for subdeterminants of a fixed or-
der r in some specific way. The aforesaid Frobenius theorem was generalized in 1949 by
Dieudonné [17] to arbitrary fields and for the transformations preserving the set of singular
matrices. The detailed and self-contained information on Frobenius endomorphisms can be
found in the special volumes of the journal Linear and Multilinear Algebra, volumes 33 and
48, completely devoted to the survey of results in this area (see [40, 42]).

The general setting of this problem can be formulated as follows. Let T : M, (F) —
M, (F) be a linear (additive, semilinear, non-linear) transformation of matrices of a fixed
order n over a certain field F. Let us consider a subset S C M, (F), or a matrix functional
p: M,(F) — @, where @ is a given set (p can be a determinant, trace, rank, permanent,
etc.), or a matrix property P (nilpotence, idempotence, singularity, etc.), or a matrix relation
R (similarity, commutativity, order, etc.). We assume that the transformation 7" preserves
one of the pointed properties: in the first case the condition X € S implies the condition
T(X) € S. In the second case p(X) = p(T(X)) for all matrices X € M, (F), etc. The
question is to characterize transformations preserving one of the S, p, P, or R.

The aim of this project is to develop some general methods to classify Frobenius endo-
morphisms and to solve some important open problems with the help of developed methods.
Past research

1. Transformations preserving zeros of matrix polynomials.

The following problem is due to Kaplansky, see [36, 37|, and Watkins, see [49], 1976:

Let p(z1,...,x) be an arbitrary element of a free associative algebra (a polynomial in
pairwise non-commuting variables z1, . .., z} of degree degp > 1) over an algebraically closed
field F of zero characteristic. Let T': M, (F) — M, (F) be a bijective linear transformation
of the linear space of n x n matrices with the entries in F. We assume that for any sequence
(A1, ..., Ag) of matrices for which p(A,..., Ax) = 0 it holds that p(®(A;),...,P(Ax)) = 0.
The problem is to characterize such transformations.

Using the methods and results from algebraic geometry Howard in [34] solved this prob-
lem for bijective linear transformations of matrices over an algebraically closed fields which
preserve the set of zeros of a given polynomial in one variable. It is pointed out in [47] that
inspite of the active investigations in this field, see [9, 11, 15, 19, 34, 42, 47, 49], some success
was achieved only for several concrete polynomials and general question remained open even
for homogeneous multilinear polynomials.

In the works [30, 31] we solve this problem in generic case. i.e., for arbitrary homogeneous
multilinear polynomials with non-zero sum of coefficients and homogeneous multilinear poly-
nomials of some special structure with zero sum of coefficients. In order to do this we put



forward and developed a new method of elementary operators which gives a possibility to
answer the question in even more general setting, namely, without assumptions of bijectivity
or linearity. In particular, we proved the following theorem:

Theorem 1. [30] Let F be an arbitrary algebraically closed field, charF # 2. Assume n > 4
and k > 3. If a surjection ® : M, (F) — M, (F) strongly preserves the zeros of p(x1,...,xx)
then there exist a field isomorphism ¢ : F — F, a functions v : M,(F)\{0} — F\{0},
w: M, (F) — F, and an invertible matriz S such that

(i) T(A) =~v(A) SA?S™ + u(A) I for all A € M, (F), or
(i) T(A) = ~v(A) S (A?)' S~' + w(A) I for all A € M, (F).

Similar results are obtained for polynomials with zero sum of coefficients of some special
structure.

2. Monotone transformations.

Various partial order relations on matrix algebras are widely investigated due to their
applications in algebra and statistics, see [3, 16]. In the series of papers [2, 24, 25, 27, 26] we
develop a new technique to characterize monotone transformations which allows us to work
not only with a certain specified order relation but to deal with additive transformations
that are monotone with respect to any abstract order relations which satisfy some natural
restrictions, these orders are called regular. In particular we show that over the field of real
numbers all such monotone transformations are linear and either bijective or equal to zero.
As a corollary we obtain the complete characterization of additive transformations over the
field of real and complex numbers which preserve one of the following order relations: Drazin
order, see [18], left and right *-orders, see [4], diamond order, see [3]. Our main result is the
following;:

Theorem 2. [27] Let < be an reqular order. Assume that T : M,, ,(F) — My, ,(F) is
an additive transformation which is monotone with respect to <. Then T has one of the
following forms:

1) T([xij]) = Plo(z,;)]|Q for all X = [x;;] € My, (F), where ¢ : F — F is a field
endomorphism , P, Q) are invertible matrices of appropriate sizes,

2) if m =n, T([z,;]) = Plo(xi;)|'Q for all X = [x;;] € M,(F), where ¢ : F — F is a
field endomorphism, P,Q € GL,(F), Y denotes the transpose matriz to the matriz'Y .

3) T([xi;]) =0 for all X = [x; ;] € My, ,(F).

In [27] it is shown that for some partial orderings the matrices P and @ are of some
special type, for example, if < is a Drazin order, then the matrices P and () are unitary.

In [12] we also obtained a characterization of linear transformations which are monotone
with respect to the non-regular orders generated by the group inverse matrix, see [41, 33].

3. Frobenius endomorphisms over tropical algebras and semirings.

Briefly, a semiring differs from a ring by the fact that not every element requires to have
the additive inverse. The most common examples of semirings which are not rings are non-
negative integers Z*, non-negative rationals Q and non-negative reals Rt with the usual
addition and multiplication, Boolean algebras, and tropical algebras.

In the papers [1, 8, 28] we developed some general technique to work with Frobenius
endomorphisms over semirings and obtained the following results. In particular, the following
theorem is an analog of Dieudonné theorem [17]
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Theorem 3. [8] Let T : My, (S) — Myun(S) be a surjective linear operator. Then the
following statements are equivalent

1. T preserves the set of S-singular matrices,
2. T preserves the set of S-nonsingular matrices,

3. there exist permutation matrices P,Q € M., ,(S) and a matriz B = [b; j| € M, 0(S)
with invertible entries b, ; for all (i,j), such that T(X) = P(X o B)Q for all X €
Mnn(S) or T(X) = P(X o B)'Q for all X € M,,,(S). Here X o B denotes the
Hadamard or Schur product.

Since there is no subtractivity in antinegative semirings, it is impossible to define the
determinant in a usual way. It is common to consider the bi-determinant which is a pair
of elements ( > a1,01) * Gnom), D,  A1o(1) " Uno()), Where S, denotes the symmetric

ocEA, o€Sp\An
group on the set {1,...,n}, A, denotes its subgroup of even permutations, see [22, 23]. The

following theorem is a semiring analog of Frobenius theorem [20].

Theorem 4. [§] Let T : My, o(S) — My n(S) be a surjective linear transformation. Then
bideterminant 7'(X) = bideterminant X for all X € M,,,(S) if and only if there exist
permutation matrices P,Q € M, ,(S) of the same parity and diagonal matrices D, E with
bideterminant (DE) = (1,0) such that T(X) = PDXEQ for all X € M, ,(S) or T(X) =
PDX'EQ for all X € My, ,(S).

Some generalizations of these results are obtained for antinegative semirings which can
be embedded to rings, see [8]. In [5, 6] we applied the developed technique to Frobenius en-
domorphisms for some combinatorial matrix properties. In [9, 10] Frobenius endomorphisms
of zeros of matrix polynomials over semirings are characterized.

4. Frobenius endomorphisms of polynomial spaces.

Let R[z] denote the ring of univariate polynomials with real coefficients and denote
by R, [z] its linear subspace consisting of all polynomials of degree less than or equal to
n. Following the classical approach of Pdlya-Schur theory [44] we studied linear operators
acting on R[z] and preserving either the set of positive univariate polynomials or similar sets
of non-negative and elliptic polynomials. The following results have been obtained, see [32]:

Theorem 5. Let Ug : R[z] — R(z] be a linear ordinary differential operator of order k > 1

with polynomial coefficients Q = (qo(x), q1(x), ..., q(x)), ¢i(z) € Rlz], 1 =0,...,k, qr(x) #

0, i.e.,
2 dk

UQ :qo(:v)+q1(x)%+qQ(x)%+...+qk(x)w. (1)

Then for any coefficient sequence @) the operator Ug does not preserve the set of non-negative
(resp., positive or elliptic) polynomials of degree 2k.

Corollary 6. There are no linear ordinary differential operators of positive finite order which
preserve the set of non-negative (resp., positive or elliptic) polynomials in R[z].



Slightly generalizing a one hundred years old result of Remak [46] and Hurwitz [35] (see
also Problem 38 in [45, Ch. 7]) we obtained the characterization of infinite order linear
ordinary differential operators

U= a0 +art +ar + . +al s
a — Qp aldm Oéde2 akd;{,‘k

with constant coefficients which preserves positivity.

Working plan
My plan is to continue the work in this area.

In particular, to extend the method of elementary operators in order to classify Frobenius
endomorphisms for zeros of non-necessary homogeneous multilinear polynomials, and thus
to obtain the complete solution of Kaplansky-Watkins problem in singular case and in the
case of non-homogeneous polynomials. The conjecture is that they will be of the same form
as in Theorem 1 in the case of non-zero sum of the coefficients. And in the case of zero sum,
the result will be the composition of the aforesaid transformations with taking a polynomial
in the preimage matrix.

I plan to consider non-additive transformations which are monotone with respect to
diamond order and apply the method of elementary operators to their classification and
prove the following theorem on partial orders generated by the generalized group inverse
matrix:

Theorem 7. Let < be either a sharp order or a cn-order. Assume that T : M, (F) — M, (F)
s a non-zero additive transformation which is monotone with respect to <. Then T has one
of the following forms:

1) T([xij]) = Plo(z;;)|P~F for all X = [z;;] € M, (F), where ¢ : ¥ — F is a field
endomorphism, P is an invertible matriz,

2) T([z;;]) = Plp(x; ;)] Pt for all X = [z;;] € M, (F).

[ am going to apply the results from [1] and [29] to the investigations of mean-payoff
games, in particular, to prove the following:

Theorem 8. Under natural non-singularity assumptions the system of linear tropical in-
equalities Ax < Bx has a solution x € R non-identically —oo if and only Player Max has
a winning state in the mean payoff game with dynamic programming operator f(x) = A*Bx.

Theorem 9. Suppose that the system Ax < Bz is non-singular and consists of finitely many
inequalities. Consider the polyhedral cone P := {x € RY; Ax < Bz}, and define the support
S of P to be the union of the supports of the elements of P:

S:={i€n|; Jue Pu # -0} .

Then S coincides with the set of initial states with a nonnegative value for the associated
mean payoff game, that is:

S=A{ien}xi(f) =0}, (2)
where f: R" — R? is such that f(z) = A*Buz.
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Also the results from [5, 6] will be applied for the investigations of strongly connected
directed graphs.

On the base of the developed technique I plan to investigate the Polya problem of com-
puting the permanent of a matrix by means of its determinant. Namely, it is planned to
prove the following

Theorem 10. Suppose n > 3, and let F be a finite field with charF # 2 and of sufficiently
large cardinality (which depends only on n). Then, no bijective map ® : M, (F) — M,(F)
satisfies

per A = det ®(A). (3)
When n = 3 the conclusion holds for any finite field with charF # 2.

Then we plan to remove the asymptotic nature of Theorem 10 by some combinatorial
arguments. It is planned to obtain analogous result also for the symmetric and Hermitian

(with respect to the involution z — 2*? where |F| = p* and k is even) matrices.

It is planned also to solve the following converse problem, posed by Gibson in [21]: what
are the necessary and sufficient conditions on a given (0,1)-matrix for the possibility of
conversion of permanent into the determinant by adding £ to the elements. We plan to
consider corresponding problems for symmetric and Hermitian matrices as well.

Teaching experience and plans

Since 1999 I work at the Department of Mathematics and Mechanics of MSU, since 2001
I work there on the full time position. Since 2007 my affiliation is Associate professor.
I give seminars in all obligatory disciplines delivering by the Faculty of Algebra, namely
Introduction to Algebra, Linear Algebra, General Algebra, Linear Algebra for economists.
Also since 2000 I constantly deliver different one year lecture courses for M.Sc. students and
Ph.D. students in my research area, namely, in the matrix theory and the ring theory. I am a
co-organizer of several scientific seminars at MSU. In January, 2003, [ was a visiting professor
in the Sung Kyun Kwan University and Pohang Institute of Science and Technology, Korea
and delivered lectures on Frobenius endomorphisms; in fall, 2004, and during the summer,
2005, I was a visiting professor in the University of Dortmund and delivered lectures in
Linear Algebra; in October, 2005, I was a visiting professor in Birmingham University,
where I delivered lectures on my research area were delivered under the grant of London
Mathematical Society; in 2006 and 2008 I was a visiting professor in Paris at INRIA and
Ecole Polytechnique, and delivered lecture courses on Frobenius endomorphisms. Currently
8 students, including a Ph.D. student, are working under my supervision in MSU. One of my
Ph.D. students has prepared the dissertation which was already predefended and submitted
in October for the defense. Also I am currently working on the preparation of a textbook
“Frobenius Endomorphisms of Matrix Spaces” based on the lecture courses delivered by
myself in Moscow, Dortmund, and Paris, and on the preparation of the computer course in
Linear Algebra and its Applications, which will be delivered by our faculty.
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