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My recent research is focused on two different fields of algebraic geometry. First, I would
like to extend the theory of Newton polytopes to arbitrary spherical varieties. My results
in this direction include explicit combinatorial formulas for the Euler characteristic of com-
plete intersections in arbitrary complex reductive groups [14, 15] generalizing the results of
D.Bernstein, Khovanskii and Kouchnirenko [20] (all complete intersections in a complex torus)
and of Kazarnovskii [17] (zero dimensional complete intersections in any reductive group).

Second, I study the theory of algebraic cobordism and is especially interested in examples
where the algebraic cobordism ring of a variety can be described explicitly. Together with Jens
Hornbostel, we established Schubert calculus for Bott-Samelson resolutions in the algebraic
cobordism rings of complete flag varieties [13] extending results of Bressler—Evens [3] for complex
cobordism to the algebro-geometric setting.

My current work is on a relation between the classical Schubert calculus on flag vari-
eties and combinatorics of Gelfand—Zetlin polytopes [16]. Together with Evgeny Smirnov and
Vladlen Timorin, we have recently found an interpretation of Schubert calculus in terms of the
Pukhlikov-Khovanskii ring associated with the Gelfand—Zetlin polytope.

Below is a detailed description of my results and future plans.

Past research

Euler characteristic of complete intersections. Let 7 : G — GL(V) be a faithful repre-
sentation of a connected complex reductive group G, and H, a generic hyperplane section of G
for this embedding. I will now explain how to find the (topological) Euler characteristic of H,
(or more generally, of a complete intersection H,, N...N H,_ for m different representations)
in terms of the weight polytope of m. My first step was to construct non-compact Chern classes
S1,-.., Sp of G (here n denotes the dimension of ) and use them to prove a non-compact
adjunction formula for the Euler characteristic x(Hy, N...N H, ). The Chern classes are ele-
ments in the ring of conditions of G and can be defined similarly to the classical Chern classes
as degeneracy loci of special vector fields on G (namely, one should consider only sums of left-
and right-invariant vector fields on G) [14, Section 3.2]. More generally, I constructed Chern
classes of arbitrary spherical homogeneous spaces [14, Section 5]. These Chern classes turned
out to be interesting on their own, in particular, their equivariant versions were recently studied
in [5, 6].

Denote by k the rank of G. I proved that the higher Chern classes S, ki1,...,5, vanish
[14, Lemma 3.8]. The adjunction formula for a hypersurface looks as follows (see [14, Theorem
1.1] for complete intersections of arbitrary dimension):

X(Hz) = (=1)"""(Hy = S1H; ™ + ..+ Spp)-

In particular, in the torus case all Chern classes vanish (since n = k) and we get that the Euler
characteristic is equal up to a sign to the self-intersection index of H, (the latter identity had
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been for some time expected to hold in the reductive case as well until this was disproved by
Kaveh [18]).

In the reductive case, we have to compute the intersection indices S;H" " for all i < (n—k).
To do this it is useful to consider a regular compactification X, of G (an analog of a smooth
toric variety) associated with the representation m. Such a compactification can be constructed
as the closure of P(7(G)) in the projective space P(End(V')) and is naturally endowed with an
action of the doubled group G x G (as in the torus case it is enough to consider only those
representations 7 for which X is regular, in particular, smooth). I refined the algorithm of
De Concini—Procesi [9] (originally developed to compute the intersection indices of divisors on
wonderful compactifications and then extended by Bifet to regular compactifications [2]) so
that it produced the following explicit formula for S; H"~" in terms of the weight polytope P,
of m:

&H:h:m—w!/‘m@mL
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where D is a fundamental Weyl chamber and Fj(z) is an explicitly defined polynomial function
of degree n — k — i on R¥ that only depends on the group itself and not on 7. Note that the
usual Chern classes of the compactification X can be expressed in terms of .S; so this formula
in particular allows to compute the intersection indices of the Chern classes with divisors in
regular compactifications.

One way to characterize the polynomial F; is to consider the Picard group of the double
flag variety G/B x G/B (note that the dimension of G/B x G/B is precisely (n — k)). The
Picard group can be identified with Z* @ Z* (if G is semisimple) so that each integer point
(z,y) € R* ® R” defines a divisor D, ). Then

c; D" (2, 1)

Bl == W

where ¢; = ¢;(G/B x G/B) is the usual i-th Chern class of the tangent bundle of the double
flag variety G/B x G/B (see [15, Section 4] for an explicit formula for F;). In particular, for
i =0 (we set So = G) the formula for S; H"~* reduces to the Brion-Kazarnovskii formula [17, 4].
I use exactly this interpretation of F; in my proof because the De Concini-Procesi algorithm
reduces all computations to the closed G' x G-orbits of X, and the latter are isomorphic to the
double flag variety. In particular, this approach gives a new proof of the Brion-Kazarnovskii
formula.

The next natural task is to find the Hodge—Deligne numbers of complete intersections in
reductive groups. In the torus case many results in this direction were obtained by Danilov and
Khovanskii [10] but the reductive case (as the computation of the Euler characteristic already
shows) presents many additional challenges and calls for new tools and ingredients.

Schubert calculus in algebraic cobordism (joint with JENS HORNBOSTEL). Algebraic
cobordism theory {2 has been recently developed in work of Levine, Morel and Pandharipande



23, 24]. The theory conveys the classical complex cobordism theory MU to the algebro-
geometric setting. In particular, algebraic cobordism Q"(X) for a smooth algebraic variety X
allows a presentation with generators being projective morphisms Y — X of relative codimen-
sion n(:= dim(X) —dim(Y')) and relations given by a double point relation (a refinement of the
naive cobordism relation) introduced by Levine and Pandharipande [24] .

Let X be the complete flag variety for a split reductive group over a field of zero character-
istic. We have described the algebraic cobordism ring Q*(X). First, we showed that there is a
natural basis given by the cobordism classes of Bott—Samelson resolutions of Schubert cycles.
Second, we expressed these classes in terms of the first Chern classes of line bundles on X using
generalized Demazure or divided difference operators ([3], Theorem 3.2). This extends to alge-
braic cobordism analogous results for the Chow ring of X [1, 11] and for the complex cobordism
ring MU*(X¢) [3]. Note that in [3] Bressler-Evens use homotopy theory methods (which can
not be extended to algebraic cobordism), while our methods are purely algebro-geometric. We
also proved a cobordism version of the Chevalley formula [13, Proposition 4.3] which allowed
us to give an efficient algorithm for multiplying two Bott—Samelson classes [13, Section 5.

One of the main tools for us was Vishik—Quillen formula [26] for the push-forward (also
called Gysin map) in algebraic cobordism in the case of projective line fibrations. In this case,
we found a new geometric proof of this formula using the double point relation [13, proof of
Proposition 2.1].

Work in progress and future plans

Schubert calculus and Gelfand-Zetlin polytopes. One of my future goals is to describe the
cohomology rings of regular compactifications of reductive groups by generators and relations
using Newton polytopes. This is motivated by the following unpublished result of Pukhlikov
and Khovanskii. To each convex polytope P they assigned a graded commutative ring Rp
using the volume polynomial of P. In the case where P is simple, the elements of Rp can be
identified with linear combinations of faces of P modulo some explicit relations. If P is an
integrally simple lattice polytope, then its Pukhlikov—Khovanskii ring Rp is isomorphic to the
cohomology ring of the toric variety Xp constructed using P (the proof is based on the fact
that the cohomology ring H*(Xp) is generated by the degree two component). Consequently,
the ring Rp models nicely the intersection theory on Xp: intersection product of cycles on Xp
corresponds to the intersection of faces of P.

Similarly, to each regular compactification X one can assign a polytope P, of dimension n
which fibers over the weight polytope P, (this is a partial case of a more general construction
by Kaveh and Khovanskii [19]). In the case G = GLy(C), the fiber over a weight A € P, is the
product of two Gelfand-Zetlin polytopes ) corresponding to the irreducible representation of
G with the highest weight X (in this case polytope P, was first constructed by Okounkov [25]).
The polytope P, captures the geometry of X, much better than the smaller polytope P, (e.g.
the BrionKazarnovskii formula becomes H” = n!vol(P,), which is completely analogous to the
Koushnirenko formula in the torus case). However, in contrast with the torus case the polytope



P, is in general non-simple and the cohomology ring H*(X) is not generated by the degree
two component. Still it might be possible to use the Pukhlikov-Khovanskii ring to describe
H*(X,). A crucial step is to understand the relation between Gelfand-Zetlin polytope @ (for
strictly dominant \) and the cohomology ring of the flag variety G/B. This is what I am doing
now.

Recall that there is a natural basis in H*(G/B) given by the Schubert cycles (which can be
defined as the closures of B-orbits). First, I constructed a correspondence between Schubert
cycles and some faces of the Gelfand-Zetlin polytope and using this correspondence proved the
following interpretation of the Chevalley formula for the intersection product of a Schubert
cycle with a divisor. Let Hy be a divisor on G/B corresponding to the weight A. For a face I'
of @y denote by Xt the Schubert cycle corresponding to I'. Then under some conditions on I’
(see [16, Theorem 5.5] for a more general statement that holds for all faces)

H)\XF = Z d(U, A)XA,
AcCr

where the sum is taken over the facets A of I" that correspond to the Schubert cycles X of
codimension one at the boundary of Xp. Here v is a fixed vertex of the face I' and d(v, A)
denotes the integral distance from v to the face A. Note that in this form the formula is
completely analogous to the well-known formulas for toric varieties.

However, it is not always possible to represent a Schubert cycle by a single face whose
combinatorics properly reflects geometry of the Schubert cycle. One reason for this is that
the intersection of two Schubert cycles (unlike the intersection of the closures of torus orbits
in a toric variety) is not necessarily a single Schubert cycle. There are several approaches
to represent Schubert cycles by unions of faces [21, 22] but they do not give any flexibility
(there is only one representation for each Schubert cycle). Together with Evgeny Smirnov and
Vladlen Timorin we are currently investigating a new approach using the Pukhlikov-Khovanskii
ring Rg, of the Gelfand-Zetlin polytope ). We proved that the ring Rg, is isomorphic to
the cohomology ring of G/B and using this isomorphism expressed Schubert cycles by linear
combinations of faces of @, (since @), is non-simple it required some extra work to show that
the elements of Rg, can still be represented by linear combinations of faces). In particular, we
got the same representation as in [22] (which is formally similar to the Fomin-Kirillov theorem
[12] describing all monomials in a given Schubert polynomial) and we hope to get many other
interesting representations using relations between faces of () in the ring Ry,. We also got a
simple description of relations between facets: they are spanned by four-term relations (sum
of two facets=sum of two facets), three-term relations (sum of two facets=one facet) and one
two-term relation (one facet=another facet).

Our next goal is to model Schubert calculus on GG/B by intersecting faces of the Gelfand—
Zetlin polytope (using our approach it is possible to represent two Schubert cycles by unions
of faces with transverse intersections). We hope to get an explicit combinatorial formula for
the structure coefficients of H*(G/B) (in the basis of Schubert cycles) in terms of the Gelfand—
Zetlin polytope so that the formula would imply the non-negativity of structure coefficients. The
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above interpretation of the Chevalley formula can be viewed as the first step in this direction.

Push-forward maps in algebraic cobordism. Let X be a smooth algebraic variety over
a field of zero characteristic, and E a vector bundle of rank r over X. Denote by Y := P(E*) the
variety of hyperplanes in £, and by 7 : Y — X the natural projection. In the case r = 2, the
Vishik-Quillen formula [26] for the push-forward =, : Q*(Y) — Q*(X) has a nice interpretation
in terms of generalized divided difference operators [13, Proposition 2.1]. Namely, using the
projective bundle formula we can identify Q*(Y') with the quotient of the ring of formal power
series Q(X)*[[y1, y=]] and on the latter ring we define the generalized divided difference operator
Aj by the formula

Al = (1 -+ 0'1)—,
Y1 —F Y2
where oy is the operator permuting y; and 5, and — denotes subtraction with respect to the
universal formal group law. My goal is to find an analogous interpretation of the push-forward
m, for arbitrary r. Such an interpretation in the Chow ring case is well-known, namely, 7,
can be described using the composition A; --- A,_; of r — 1 usual divided difference operators.
However, in the cobordism case extra terms do appear. I have a geometric argument using a
double point relation which allows to describe these extra terms by induction on 7.

Possible applications of a formula for push-forward in algebraic cobordism via divided dif-
ference operators might include translation of some of the topological results in [8, 7] to the
algebro-geometric setting. In particular, this might lead to an explicit formula for the push-
forward for the variety of complete flags in F.

Teaching experience and plans

I have been teaching mathematics for over 10 years. At the Stony Brook University and
Jacobs University Bremen, I taught over 10 courses ranging from elementary and advanced
undergraduate courses to graduate core and topics courses. The complete list of courses with
programs and teaching materials is available on my homepage http://www.mccme.ru/ valya/.
For two years, I had been teaching topics courses for high school and undergraduate students
at the summer school “Contemporary Mathematics” in Dubna, Russia.

Right now [ am teaching a topics course ” Geometry of spherical varieties” at the Independent
University of Moscow. Using my notes for this course I plan to write a textbook, which can
serve as an elementary introduction to geometry of spherical varieties. Preliminary version
of the first few chapters (typed with help of Igor Netai) is available at the course webpage
http://www.mccme.ru/ valya/spherical.html.
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