
Vladlen Timorin: Research project

I am doing Geometry in a broad sense: my interests range from dynamical systems to
algebraic and differential geometry. I have publications in several mathematical fields, and
continue to pursue several different lines of research. However, what follows is my most recent
and active research project focused on topological dynamics of rational functions.
Rational functions and regluing. A rational function of one complex variable (i.e. a
ratio of two polynomials) is among the simplest and most basic objects in algebra. However,
an extremely rich and complicated structure is revealed when one starts to iterate a rational
function, i.e. consider it from the point of view of dynamical systems. The Riemann sphere
CP 1, on which a rational function acts, gets divided into two fully invariant sets: an open
set, called the Fatou set, on which the dynamics is stable (e.g. in the sense of Lyapunov) and
simple, and a closed set, called the Julia set, on which the dynamics is unstable and chaotic.
Julia sets tend to have fractal shapes and very intricate geometric properties.

The following commutative diagram appears in a great variety of contexts:

X
Φ−−−→ Y

f

y
yg

X −−−→
Φ

Y

(∗)

Suppose e.g. that f : CP 1 → CP 1 is a rational function, g : S2 → S2 is a continuous map, and
Φ a homeomorphism. Then g is topologically conjugate to f . Even if f is given by an explicit
formula (say, f(z) = z2− 1.5), it may be very hard to understand its dynamical properties, i.e.
what the f -orbits of points are doing. On the other hand, we may have a good model g for
f , which is not given by explicit formula but has in a sense explicit dynamics. The meaning
of “explicit dynamics” is hard to formalize but, for a good model g, it should be clear what
the “model Fatou set” and the “model Julia set” are. Moreover, the topology of the Julia set
should be made explicit (e.g. we may know that the Julia set is a Cantor set, or a Sierpinski
carpet), and it should also be clear which parts of the Julia set map to which parts (e.g. we
may have a Markov partition of the Julia set).

Topological models for quadratic polynomials with locally connected Julia sets and all pe-
riodic points repelling were constructed by Douady and Hubbard [DH] and, using a different
language, by Thurston. Thurston’s construction represents Julia sets as quotients of the unit
circle by explicitly defined equivalence relations. On the other hand, there are quadratic poly-
nomials of the form f(z) = z2 + c, for which no explicit topological models are known. There
are also general ways to build new topological models out of known topological models. A
well-known mating construction by Douady and Hubbard defines a model of a rational function
by gluing the models of two polynomials together, in a certain explicit way. Another construc-
tion is capture (it has been defined in a thesis of B. Wittner [W], and extensively studied and
generalized by M. Rees [R92]): it allows to define a model for a rational function with a specific
periodic or pre-periodic behavior of one critical point. There are few more such constructions,
however, much more general principles of making topological models are needed.
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The main objective of this project is to develop systematic ways of building topological models
for rational functions. The procedure I suggest can be described by the same diagram (∗);
however, it must be interpreted differently. It would be too restrictive to regard Φ as a map.
Instead, I propose to regard it as a topological correspondence, i.e. a closed subset of X × Y ,
which is not necessarily a map, but is explicit enough to understand topological dynamics on
Y in terms of that on X. It will be instructive to think of topological correspondences as
multivalued continuous maps.

I plan to use the following class of topological correspondences. Let Z be a topological
sphere, D ⊂ Z a closed topological disk, and πX : Z → X, πY : Z → Y quotient maps that
are injective outside of D. The correspondence E = πX × πY (Z) ⊂ X × Y is called a regluing
correspondence (we also say that E is a regluing of πX(D) into πY (D)). A simple example of
regluing is the following. Set X = Y = CP 1, and consider the multivalued function

√
z2 − 1.

For every simple curve α : [−1, 1] → C such that α(−t) = −α(t) and α(1) = 1, there is a
branch of

√
z2 − 1 defined over the complement to α[−1, 1]. The closure of the graph of this

branch defines a regluing of α[−1, 1] into a simple curve connecting i with −i.
Consider diagram (∗), in which Φ is understood as a regluing correspondence. Given a

rational function f : CP 1 → CP 1, the diagram defines g; however, this will also be a topological
correspondence rather than a function: it will have multiple values at some points. To have a
precise setting, assume that f is a function of z2 (e.g. any rational function is Möbius conjugate
to a function of this form), and α : [−1, 1] → C is a simple curve such that α(−t) = −α(t). Let

Φ be a regluing of α given by the multivalued function
√

z2 − α(1)2. Then f ◦ Φ−1 extends to
a rational function. However, the correspondence g = Φ ◦ f ◦ Φ−1 is not a well-defined map,
because it has multiple values over f -pullbacks of α[−1, 1]. We can consider a regluing of these
two curves etc. As a result, we obtain a sequence of regluing correspondences. A limit of this
sequence can be understood in the following sense.

Consider a sequence (Xn, En) consisting of topological spaces Xn and topological correspon-

dences En ⊂ Xn×Xn+1. Form new spaces X̂n consisting of sequences (xn, xn+1, . . . ) such that
(xm, xm+1) ∈ Em for all m ≥ n (this goes like in the inverse limit construction). We define

the topology on X̂n as that induced from the embedding of X̂n into
∏

m≥n Xm. Then we have

well-defined maps σn : X̂n → X̂n+1 (forgetting the first term). The direct limit X∞ of this
sequence of maps is called the limit of (Xn, En).

We now have the following tasks:

(1) Under some general assumptions, prove that the limit of regluing correspondences (or
a certain quotient of it) is homeomorphic to the 2-sphere.

(2) Suppose X1 = CP 1, and f1 : X1 → X1 a rational function. Form a sequence (Xn, En) of
regluing correspondences as above. There are topological correspondences fn : Xn → Xn

that commute with En. They define a continuous map f∞ : X∞ → X∞. Give criteria
for f∞ being topologically conjugate to a rational function.

(3) For some interesting classes of rational functions on CP 1, give topological models in
terms of the maps f∞ : X∞ → X∞.

(4) Find some conditions, under which the limit X∞ carries a canonical conformal structure,
and f∞ is holomorphic with respect to this structure.

2



Progress already made. I have made initial progress in parts (1), (3) and (4). The results
described below deal with the following particular case of the regluing construction. Let E1 be
the regluing correspondence that “cuts along a simple curve C = α[−1, 1] and glues it back in a
different way”, as explained above. Then E1 defines a sequence En of regluing correspondences
(by a version of Thurston’s algorithm applied to f1). Suppose that all iterated pullbacks of C
under f1 are disjoint and do not contain critical points. In this case, we say that (X∞, f∞)
is obtained from (X1, f1) by regluing of disjoint simple curves (namely, all pullbacks of C
under f1). Since the curves are disjoint, all regluings can be made simultaneously: there is a
(multivalued) map Φ from X1 to X∞ that is single-valued and continuous on the complement
to pullbacks of C, and that “reglues” all these pullbacks.

Part (1) (the space X∞ is homeomorphic to the 2-sphere) is proved [2] in this case. It follows
from a purely topological fact:
Theorem [2]. Consider a countable set Z of disjoint compact connected locally connected non-
separating sets in S2. Suppose that Z forms a null-sequence. For every A ∈ Z, fix a continuous
map ΠA : S2 → S2 such that ΠA restricts to an orientation-preserving homeomorphism between
the complement to a closed disk ∆ and S2−A, and ΠA(∆) = A. The equalizer XZ of all maps
ΠA is homeomorphic to S2.

Intuitively, the space XZ is obtained from S2 by blowing up all elements of A ∈ Z according
to the maps ΠA. This result uses Moore’s axiomatic characterization of topological 2-spheres.
More general results are possible (an indication and some preparation is given in [4]).

For part (3), I considered slices Perk(0) in the space of Möbius conjugacy classes of quadratic
rational functions (following the guidelines of M. Rees [R92] and J. Milnor [M93]). The slice
Perk(0) is defined by the property that one critical point is periodic of a given period k (the zero
in the notation stands for the multiplier of a periodic cycle). The first slice Per1(0) identifies
with the space of quadratic polynomials z 7→ z2 + c, the most studied parameter family.
Hyperbolicity is the simplest dynamical behavior: a hyperbolic rational function combines a
strong contraction on the Fatou set with a strong expansion on the Julia set. The set of
hyperbolic maps is open (in every reasonable parameter space), the components of this set are
called hyperbolic components. Hyperbolic components in Perk(0) are classified into four types
[R90, M93] A, B, C and D, according to the types of mutual behavior of the two critical points.
E.g. a hyperbolic function of type B in Perk(0) is defined by the property that the non-periodic
critical point lies in the immediate basin of the critical periodic cycle. A hyperbolic rational
function of type C in Perk(0) has the property that the non-periodic critical point is attracted
by the critical periodic cycle but is not in the immediate basin. I have proved the following
Theorem [2]. All rational functions on the boundaries of type C hyperbolic components in
Perk(0) but not on the boundaries of type B hyperbolic components are obtained from hyperbolic
quadratic rational functions (for which explicit topological models are known) by regluing of
disjoint simple curves.

For most type C components, this gives topological models for all boundary maps — the
situation is better than that in the family z2 + c, where all hyperbolic components have many
complicated maps on the boundary, whose models are not currently known (there are no type
C or B components in Per1(0)). In Per2(0), there is only one type B component, and all maps
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on its boundary (except for parabolics) can be obtained from 1/z2 by regluing of disjoint simple
curves [1]. Moreover,
Theorem [1]. All maps on the boundary of the only type B component in Per2(0) are simul-
taneously matings and anti-matings.

Part (4) is done [3] in the case, where a simple regluing of a quadratic polynomial leads to
a quadratic polynomial with totally disconnected Julia set. Since we know which quadratic
polynomial we obtain as f∞, the issue is to prove that the map Φ is holomorphic in a certain
generalized sense. Let Z be a countable union of disjoint simple curves. Assume that Z has
zero Lebesgue measure. We say that a map Φ : C − Z → C is holomorphic modulo Z if there
is a function Ψ : Z → C such that ∫

C−Z

Φ ∂ω =

∫

Z

Ψ ω

for every smooth (1,0)-form ω on C with compact support. Intuitively, this definition says
that the distributional differential ∂Φ must be a sum of countably many δ-like (0,1)-currents
supported in Z.
Theorem [3]. Consider a quadratic polynomial f : z 7→ z2 + c with connected Julia set such
that the critical value c is accessible from the basin of infinity. There exists a countable union
Z of disjoint simple curves of zero area, and a quadratic polynomial g with totally disconnected
Julia set such that Φ ◦ f = g ◦Φ on C−Z, where Φ : C−Z → C is a holomorphic map modulo
Z.
Future plans. First, the requirement that all pullbacks of C under f1 be disjoint should be
relaxed. Assume only that 1) the forward orbits of critical points and of the endpoints of C are
disjoint from C, and 2) no point of C returns to C infinitely many times (under the dynamics
of f1).
Conjecture (Part (1)). A suitable topological quotient Y of X∞ is homeomorphic to the sphere,
and f∞ descends to a branched covering g : Y → Y .

To prove this conjecture, I plan to use a relative version of Moore’s theorem introduced in
[4].
Conjecture (Part (2)). Suppose additionally that the map g is critically finite, i.e. the forward
orbits of all critical points are finite. Then g has no Thurston obstructions (therefore, it is
Thurston equivalent to a rational function h). The function g is even topologically conjugate to
h.

Checking that a critically finite branched covering has no Thurston obstructions is a technical
task, which is sometimes very complicated. However, in this case, I do not expect principal
difficulties. This result can be used as follows: consider a rational function f1 that is not
critically finite (and whose combinatorics may be complicated). Do a regluing surgery to
obtain a critically finite branched covering g topologically conjugate to a critically finite rational
function h. In general, h is much simpler than f1. Assume that the topological dynamics of h
is known. Then we can often describe the topological dynamics of f1 by “undoing” the surgery.

It is clear that all intermediate spaces Xn have canonical conformal structures.
Task (Part (4)). Define a “degenerate limit conformal structure” on X∞ in terms of conformal
structures on Xn. Prove that f∞ is holomorphic with respect to this “degenerate” conformal

4



structure. Finally, the degenerate conformal structure on X∞ induces a non-degenerate confor-
mal structure on Y , and g is holomorphic with respect to this structure.

A part of the problem is to define the notion of “degenerate conformal structure” on a
topological space (that is not necessarily nice).

A possible progress in part (3) includes the description of the boundaries of type B hyperbolic
components in Perk(0) in terms of regluing. A rather straightforward transfer can be made
from Perk(0) to Perk(λ) (parameter slice of quadratic rational functions having a k-cycle with
multiplier λ) with |λ| < 1. The case |λ| = 1 is much subtler. However, it is very interesting,
and I believe the regluing surgery can be done in these parameter slices in the same way as in
Perk(0) (the Siegel case is of course easier than the Cremer case). Regluing methods can also be
tested on parameter spaces of rational functions with a preperiodic critical point (say, of given
period and preperiod). I believe that all (or, at least, all sufficiently nice) such functions can
be obtained from polynomials by regluing (which makes the fixed critical point at infinity into
a preperiodic critical point). There is a combinatorial aspect in this. Namely, starting with a
critically finite polynomial and a path connecting infinity to a preperiodic point, we can define
a Thurston equivalence class of branched coverings (e.g. by applying a path homeomorphism
in the sense of M. Rees). Regluing surgery associated with this path (if it leads to a rational
function) must belong to the same class. The question is to find whether the given Thurston
equivalence class represents a rational function, and, if yes, which rational function (these
questions are similar to those addressed in [BN, T, R95, R] etc.).
Related joint projects. Finally, let me mention several joint projects that are related to
this project of mine. In a joint project with A. Blokh, we study “combinatorial models” for
cubic polynomials. Our goal is to obtain a description of the “combinatorial cubic Mandelbrot
set” similar to well-known descriptions of “combinatorial quadratic Mandelbrot set” (which is
homeomorphic to the actual Mandelbrot set provided that the latter is locally connected —
local connectivity of the Mandelbrot set is a major open problem). Since cubic Mandelbrot set
lives in 4-dimensional space and is hard to visualize, we approach the problem by considering
certain generic 2-dimensional slices of it. A possible topological picture of these slices includes
a repeated regluing surgery in the parameter picture. In a joint project with M. Rees, we try to
find persistent Markov partitions for rational functions in Perk(0) — the first case to consider
is the “airplane region” in Per3(0). In a joint project with M. Lyubich, we are trying to prove
a simple criterion of hyperbolicity for 2D Henon maps.
Teaching experience and plans. I have been teaching various mathematical courses at all
levels in Russia, Canada, USA and Germany. My current employment at the State University
Higher School of Economics comes with teaching and supervising students. I also plan to give
a special topics course in holomorphic dynamics at the Independent University of Moscow.
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