Предел последовательности

Определение 1. Пусть $\varepsilon > 0$. ε -окрестностью точки A называется множество точек находящихся на расстоянии менее ε от точки A. Эта окрестность обозначается $U_{\varepsilon}(A)$.

Множество $\{x \in \mathbb{R} : |x| > 1/\varepsilon\}$ называется ε -окрестностью бесконечности.

Задача 1. а) Что такое ε -окрестность точки на плоскости? На прямой? б) Докажите, что у любых двух различных точек A и B плоскости суще-

б) Докажите, что у любых двух различных точек A и B плоскости существуют непересекающиеся окрестности.

Определение 2. Число a называется npedenom последовательности $\{x_n\}$ если

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n > N \,|x_n - a| < \varepsilon$$

Обозначения: $a = \lim_{n \to \infty} x_n; \qquad x_n \to a,$ при $n \to \infty;$ последовательность $\{x_n\}$ стремится (сходится) к a.

Задача 2 (Корректность определения предела). Докажите, что у последовательности не может быть двух различных пределов.

Задача 3. Приведите пример последовательности, которая не имеет предела.

Задача 4. Докажите, что если последовательность имеет предел, то она ограничена. Верно ли обратное?

Соглашение. Будем говорить, что некоторое свойство выполняется для noumu всей последовательности, если оно выполняется для всех членов последовательности, за исключением, быть может, конечного числа членов.

Задача 5. Пусть известно, что почти вся последовательность $\{x_n\}$ лежит на отрезке [0,2] и бесконечное число ее членов лежит на отрезке [1,3]. Какие из следующих высказывания всегда истинны, какие всегда ложны, какие могут быть и истинными и ложными?

- а) На отрезке [1,2] лежит почти вся последовательность $\{x_n\}$.
- б) На отрезке [1,2] лежит бесконечно много членов последовательности $\{x_n\}$.
- в) Последовательность $\{x_n\}$ ограничена.
- г) Существует отрезок длины $\frac{1}{100}$ на котором лежит бесконечно много членов последовательности.
- д) Существует отрезок длины $\frac{1}{100}$ на котором лежат почти все члены последовательности.

Определение 3. Число a называется npedenom последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ почти вся последовательность $\{x_n\}$ содержится в ε -окрестности точки a.

Предел последовательности

Задача 6. Докажите, что определение 2 и определение 3 эквивалентны.

Задача 7. Какие из следующих последовательностей имеют пределы?

а)
$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n-1} \frac{1}{n} \dots$$
 г) $q, q+q^2, q+q^2+q^3, \dots$ д) $\sin(1^\circ), \sin(2^\circ), \dots, \sin(n^\circ), \dots$ в) $\frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \dots, (-1)^{n-1} \frac{n}{n+1}, \dots$ е*) $\sin(1), \sin(2), \dots, \sin(n), \dots$

r)
$$q, q + q^2, q + q^2 + q^3, \dots$$

$$6) \ \frac{1}{2}, \frac{3}{2}, \frac{3}{4}, \frac{5}{4}, \frac{7}{8}, \frac{9}{8}, \dots$$

$$д) \sin(1^\circ), \sin(2^\circ), \ldots, \sin(n^\circ), \ldots$$

B)
$$\frac{1}{2}$$
, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ..., $(-1)^{n-1}\frac{n}{n+1}$, ...

$$e^*$$
) $sin(1)$, $sin(2)$, ..., $sin(n)$,

Определение 4. Число a называется npedenьной точкой последовательности $\{x_n\}$, если для любого $\varepsilon>0$ в ε -окрестности точки a содержится бесконечно много членов последовательности $\{x_n\}$.

Задача 8. а) Дана последовательность $\{x_n\}$ и число a. Докажите, что если в любой окрестности точки a есть элемент последовательности не равный a, то a является предельной точкой последовательности $\{x_n\}$.

б) Верно ли обратное утверждение?

Задача 9. а) Докажите, что у сходящейся последовательности ровно одна предельная точка.

б) Верно ли, что последовательность, имеющая ровно одну предельную точку, сходится?

3адача 10. Докажите, что a является предельной точкой последовательности $\{x_n\}$ тогда и только тогда, когда у последовательности $\{x_n\}$ есть подпоследовательность, сходящаяся к a.

Задача 11. Найдите предельные точки для последовательностей из задачи 7.

Задача 12. Существует ли последовательность у которой

- а) нет ни одной предельной точки;
- б) бесконечно много предельных точек;
- в) любое число является предельной точкой;
- г) множество предельных точек совпадает с множеством рациональных чисел?

Задача 13. Предел последовательности $\{x_n\}$ положителен. Верно ли что почти все члены последовательности положительны?

Задача 14. а) Приведите пример ограниченной последовательности которая не имеет ни наибольшего ни наименьшего членов.

б) Существует ли такая сходящаяся последовательность?