
Theoretical Computer Science 304 (2003) 1–33
www.elsevier.com/locate/tcs

Almost periodic sequences
An. Muchnik∗ , A. Semenov, M. Ushakov

Institute of New Technologies Education, Nizhnaya Radishevskaya Street # 10, Moscow 109004, Russia

Received 11 October 2000; received in revised form 19 September 2002; accepted 6 November 2002
Communicated by B. Durand

Abstract

This paper studies properties of almost periodic sequences (also known as uniformly recursive).
A sequence is almost periodic if for every 0nite string that ccurs in0nitely many times in the

sequence there exists a number m such that every segment of length m contains an ccurrence of
the word.

We study closure properties of the set of almost periodic sequences, ways to generate such se-
quences (including a general way), computability issues and Kolmogorov complexity of pre0xes
of almost periodic sequences.
c© 2002 Published by Elsevier B.V.

Keywords: Almost periodic sequence; Uniformly recurrent sequence; Finite automaton; Finite transducer;
Kolmogorov complexity

1. Introduction

Let ; be a 0nite alphabet. We will talk of sequences in this alphabet, that is,
functions from N to ; (here N = {0; 1; 2; : : :}).

Let i; j ∈ N, i ≤ j. Denote by [i; j] the set {i; i+1; : : : ; j}. Call this set a segment. If �
is a sequence in an alphabet ; and [i; j] is a segment, then the string �(i)�(i+1) · · · �(j)
is called a segment of � and written �[i; j]. A segment [i; j] is called an occurrence of
a string u in a sequence � if �[i; j] = u.
We imagine the sequences going horizontally from left to right, so we shall use terms

“to the right” or “to the left” to talk about greater and smaller indices, respectively.

∗ Corresponding author. Fax: +7-095915693.
E-mail address: amuchnik@int.glasnet.ru (A. Muchnik).

0304-3975/03/$ - see front matter c© 2002 Published by Elsevier B.V.
doi:10.1016/S0304-3975(02)00847-2

mailto:amuchnik@int.glasnet.ru

2 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

De�nition 1. A sequence �:N→ ; is called almost periodic if for any string u there
exists a number m such that one of the following is true:
(1) There is no occurrence of u in � to the right of m.
(2) Any �’s segment of length m contains at least one occurrence of u.

Let AP denote the class of all almost periodic sequences.
The notion of almost periodic sequences generalizes the notion of eventually periodic

sequences (the sequence � is eventually periodic if there exist N and T such that
�(n+ T) = �(n) for all n ¿ N). We will prove further that there exists a continuum
set of almost periodic sequences in a two-character alphabet (some examples of such
continuum sets can be found in [8,2]). Obviously, the set of all eventually periodic
sequences in any 0nite alphabet is countable.

De�nition 2. A sequence �:N→; is called strongly almost periodic if for any string
u either u does not have any occurrence in � or there exists a number m such that
every segment of � of length m contains at least one occurrence of u.

Strongly almost periodic sequences (under a diKerent name) were studied in the
works of Morse and Hedlund [7,8]. They have appeared 0rst in the 0eld of sym-
bolic dynamics, but then turned out to be interesting in connection with computer
science.
The notion of strong almost periodicity is not preserved even under the mappings

given by the most simple algorithms, the 0nite automata. For example, a stronly almost
periodic (and even periodic) sequence 0000 : : : can be mapped by a 0nite automaton
to a non-almost periodic sequence 1000 : : :. Finite automata map periodic sequences to
eventually periodic, that is, becoming periodic after deleting some pre0x. The property
of eventual periodicity is preserved under the mappings done by 0nite automata. This
leads to an idea to seek, for the notion of strong almost periodicity, a corresponding
notion of eventual almost periodicity that would be preserved under the mappings
done by 0nite automata. We succeeded at 0nding such a notion, and it is formulated
in De0nition 1. For brevity we called it simply almost periodicity (and not eventual
almost periodicity).
The class of almost periodic sequences is signi0cantly richer than the class of even-

tually periodic sequences and corresponds to a richer class of real-world situations. In
many cases, however, studying bidirectional sequences (functions from Z to ;) would
be more adequate. We note that under a suitable de0nition the theory of bidirectional
almost periodic sequences can be reduced to the theory of unidirectional almost periodic
sequences, and study only unidirectional sequences.
This work studies the class AP in four directions. In Section 3 we study various

closure properties of AP. In Section 4 we consider methods of generating almost
periodic sequences: block products (known from the paper [4]), dynamic systems (an
example: the sign of sin(nx)) and, 0nally, the universal method. In Section 5 we
present some interesting examples of almost periodic sequences. Section 6 considers
the Kolmogorov complexity of almost periodic sequences. The Section 2 is auxiliary;
it presents some equivalent de0nitions of almost periodic sequences.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 3

Some of this paper’s results are a developement of results published by one of the
authors in [9].

2. Equivalent de�nitions

Consider all strings of length l. These are of two types: ones that occur in � only
0nitely many times and ones that have in0nitely many occurrences. Let us call them
types I and II, respectively. For any l there is a pre0x of � such that it contains all
occurrences of all strings of type I. Then, every string of length l occurring in the rest
of � is of type II.
Consider a string u of type II. The above De0nition 1 guarantees that gaps between

occurrences of u in � are bounded above by some constant m. This fact can actually be
taken as an equivalent de0nition of almost periodic sequences. By the “gap” between
two occurrences [i; j] and [k; l] we understand k − i, the distance between the starting
points of the occurrences.

De�nition 3. A sequence � is almost periodic if for any l there exist numbers m and
k such that every segment of length not more than l occurring to the right of k occurs
in0nitely many times in � and gaps between its occurrences are bounded above by m.

We stress that it is necessary to have m depend on l. The following theorem shows
this:

Theorem 1. Let � be a sequence and m a number. Suppose that for every l there
exists a number k such that every l-character segment of � to the right of k occurs
in4nitely many times in � and gaps between its occurrences do not exceed m. Then
� is eventually periodic.

Proof. Let us show that � is eventually periodic and the period is at most m! Consider
k that corresponds to l = m! in the statement of this theorem. We shall now prove that
for every i ¿ k, �(i) = �(i +m!). Let i be greater than k and u be a string occurring
in � in positions i through i+m!−1. We are guaranteed that gaps between occurrences
of u are no more than m. So, there is an occurrence of u starting at position j where
i ¡ j ≤ i + m− 1. Since in that case �[i; i + m!− 1] = �[j; j + m!− 1], we have

�(i) = �(j) = �(i + (j − i));

�(i + (j − i)) = �(j + (j − i)) = �(i + 2(j − i));

: : :

Taking into account that j − i ¡ m and thus (j − i)|m!, we get

�(i) = �(i + m!);

which proves the theorem.

Finally, let us give an eKective variant of our main de0nition.

4 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

De�nition 4. An almost periodic sequence � is called e5ectively almost periodic if
• � is computable,
• m from De0nition 1 is computable given u.

A parallel eKective variant of De0nition 3 is evidently equivalent to this one (we
can take all strings of length ≤ l in turn, and choose maximal m; conversely, m+k+ l
from the eKective variant of De0nition 3 0ts any u of corresponding length l).

3. Closure properties of AP

Denote by ;∗ the set of all strings in alphabet ; including the empty string N.

De�nition 5. A map h: ;∗ → O∗ is called a homomorphism if h(uv) = h(u)h(v) for
all u; v ∈ ;∗. (We write uv for concatenation of u and v.)

Clearly, homomorphism h is fully determined by its values on one-character strings.
Let � be an in0nite sequence of characters of ;. By de0nition, put

h(�) = h(�(1))h(�(2)) : : : h(�(n)) : : : :

Evidently, if � is eventually periodic and h(�) is in0nite, then h(�) is eventually
periodic.

Theorem 2. Let h: ;∗ → O∗ be a homomorphism, and �:N→ ; be such a sequence
that h(�) is in4nite.
• If � is almost periodic, then so is h(�).
• If � is e5ectively almost periodic, then so is h(�).

Proof. Let us call a character a ∈ ; non-empty if h(a)
= N. Since h(�) is in0nite,
there are in0nitely many occurrences of non-empty characters in �. Now, since � is
almost periodic, there exists a number k such that every �’s segment of length k
contains at least one non-empty character.
Take a natural number l. Every string of length l in h(�) is contained in the image

of some string of length not more than kl in �.
Every single character in � maps into some segment of h(�) (which may be empty).

Mark all ends of these segments for all characters of �. The sequence h(�) becomes
separated into blocks of characters. All characters within such block map from a single
character in � (and some blocks may be empty). Since ; is 0nite, there exists an upper
bound S on lengths of such blocks.
So, we found out that the homomorphism h can neither shrink nor expand the

sequence “too much.” The image of any segment of length L is no longer than LS and
no shorter than L=k − 1. This is the main idea that leads us to the desired result. The
following just 0lls in some technical details.
Let us take a pre0x of � such that every string of length kl outside this pre0x is of

type II, and let m be a natural number bounding above the gaps between occurrences

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 5

of these strings. Also let us take the corresponding pre0x of h(�) and call h̃ the rest
of h(�).
Consider an occurrence of any string u of length l in h̃. It is contained in the

image of a string of length not more than kl. Let us denote this string by v and the
corresponding segment of � by [i; j]. We have |v| ≤ kl. By Rv denote the string of
length kl in � starting at i. Every �’s segment of length m contains a start of at least
one occurrence of Rv in �. Let us prove that every h(�)’s segment of length (m+ 2)S
contains a start of at least one occurrence of u.
Consider any segment of length (m + 2)S in h(�). It contains the image of an �’s

segment of length not less than [(m+ 2)S − 2(S − 1)]=S ≥ m (because every character
in � maps to no more than S characters in h(�)). This segment has a start of some
occurrence of Rv in �. The image of this occurrence contains an occurrence of u in
h(�). Therefore, the considered segment contains an occurrence of u.
To prove the second statement note that h(�) is computable and that (m+ 2)S can

be eKectively computed.

Now let us study mappings done by 0nite automata.

De�nition 6. A 4nite automaton with output is a tuple 〈;;O; Q; q0; T 〉 where:
• ; is a 0nite set called input alphabet,
• O is a 0nite set called output alphabet,
• Q is a 0nite set of states,
• q0 ∈ Q is an initial state, and
• T ⊂ Q × ;×O× Q is a transition set.

If 〈q; �; �; q′〉 ∈ T , we say that the automaton in state q seeing the character � goes
to state q′ and outputs the character �.

De�nition 7. If for any pair 〈q; �〉 there exists a unique tuple 〈q; �; �; q′〉 ∈ T , the
automaton is called deterministic.

De�nition 8. Let � be a sequence and A an automaton. A sequence (q0; �0); : : : ;
(qn; �n); : : : is a run of A on � if the following two conditions hold:
• q0 is the initial state of A, and
• 〈qi; �(i); �i; qi + 1〉 is a transition of A for every i ≥ 0.

Let us call �0; : : : ; �n; : : : the A’s output on this run.

If A is deterministic, then it has a unique run on every sequence. Denote by A(�)
its output on �. (For an introduction in the theory of 0nite automata see, for example,
[10].)

Theorem 3. Let A be a deterministic 4nite automaton and � an almost periodic
sequence. Then A(�) is also almost periodic. Moreover, if � is e5ectively almost
periodic, then so is A(�).

6 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

Proof. We need to prove that if some string u of length l occurs in A(�) in0nitely
many times then the gaps between its occurrences are bounded above by a function in
l. To prove this, it is suScient to prove that for every occurrence [i; j] of u located
suSciently far to the right in A(�) there exists another occurrence of u within a
bounded segment to the left of i. Obviously this already holds for �: there exist two
monotone functions k and m such that for any l-character segment [i; j] starting to the
right of k(l) there exists a “copy” of it starting between i − m(l) and i − 1.
Take an l-character string ũ in A(�) and its occurrence [i; j]. Suppose it is located

suSciently far to the right (leaving the exact meaning of “suSciency” to a later dis-
cussion). Call u1 the corresponding string in � (actually u1 = �[i; j]). Let A enter the
segment [i; j] in state q1. For uniformity, denote i1 = i and l1 = l.
There exists an occurrence of u1 in � starting between i1−m(l1) and i1− 1. Denote

the start of this occurrence i2 and the corresponding A’s state q2. If q2 = q1 then A
outputs the string ũ starting at i2.
If q2
= q1 consider the string u2 = �[i2; j]. Let l2 be its length. This string has the

following property. If A enters it in state q1, it outputs ũ on the 0rst segment of length
l; if A enters it in state q2, it enters the last segment of length l (which contains a
copy of u1) in state q1 and, again, outputs ũ.
There exists another occurrence of the string u2 with a start between i2 −m(l2) and

i2 − 1. Let i3 be this start and q3 the corresponding A’s state.
If q3 = q2 or q3 = q1, then the automaton enters a copy of the string u2 in state

q2 or q1 and outputs ũ according to the formulated property. If q3
= q2 and q3
= q1,
repeat the described procedure.
Namely, on the nth step we have a string un of length ln with an occurrence [in; j]

in �, and a set of states q1; : : : ; qn. The property is that if A enters un in one of the
states q1; : : : ; qn, its output contains ũ. Then, we 0nd an occurrence of un with a start
between in − m(ln) and in − 1, call its start in+1 and the corresponding state qn+1. If
qn+1 equals one of the states q1; : : : ; qn, then we have found an occurrence of ũ to the
left of i. Otherwise, we have found a string un+1 = �[in+1; j] with a similar property.
Since un+1 starts with a copy of un, if A enters un+1 in one of the states q1; : : : ; qn, it
outputs ũ somewhere in this copy; if A enters un+1 in state qn+1, it outputs ũ at the
end of un+1.
Since the set of A’s states is 0nite, we only need to do the procedure a 0nite number

of times, namely, |Q| (here |Q| is the cardinality of this set). After this number of
steps we will de0nitely 0nd another occurrence of ũ.
Let us show that the gap between the found occurrence and the original occurrence

[i; j] is bounded from above. For the start of u2 we have i2 ≥ i1 − m(l1). Thus l2 ≤
l1 + m(l1). To be able to take this step, we need i1 ¿ k(l1).
On the nth step, we have

in+1 ≥ in − m(ln) ≥ i1 − m(l1)− m(l2)− · · · − m(ln);

and

ln+1 ≤ ln + m(ln) ≤ l1 + m(l1) + m(l2) + · · ·+ m(ln):

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 7

The nth step can be performed if in ¿ k(ln). To make this true, it is suScient to
have i1 − m(l1)− : : :− m(ln−1) ¿ k(ln). So this is true if

i1 ¿ k(l1);

i1 ¿ k(l2) + m(l1);

i1 ¿ k(l3) + m(l1) + m(l2);

...

i1 ¿ k(l|Q|+1) + m(l1) + · · ·+ m(l|Q|):

Let k ′ be the maximum of right-hand sides of these inequalities. Let m̃ = l|Q|+1.
So, we proved that every string ũ that has an occurrence [i; j] in A(�) to the right

of k ′ has another occurrence starting between i − m̃ and i − 1. This suSces for A(�)
to be almost periodic. Our next goal is eKectiveness issues.
Clearly, A(�) is computable. If the sequence � is eKectively almost periodic, then

all mentioned numbers can be computed. We only need to be able to 0nd out whether
a given string ũ occurs in � 0nitely or in0nitely many times.
To do so, consider a set S of all strings of length m̃ that do not contain any

occurrence of ũ. There exist numbers k ′′ and m̃′ such that every string in S that has
an occurrence [i′; j′] to the right of k ′′ has another occurrence starting between i′ − m̃′

and i′ − 1. Let K = max{k ′; k ′′}.
If there are in0nitely many occurences of ũ, then every segment of length m̃ has an

occurrence of ũ.
If, however, there are only 0nitely many occurrences of ũ, then there is an occurrence

of some string from S to the right of K . By shifting this occurrence to the left, we
can 0nd an occurrence with a start on the segment [K; K + m̃′ − 1].

Note that if we found a segment of length m̃ that does not have any occurrence of
ũ, then there is no occurrences to the right of it.

Now we can check the segment [K; K+m̃′+m̃−1] to see if it contains a subsegment
of length m̃ without an occurrence of ũ. If we 0nd such a subsegment, then there are
0nitely many occurrences of ũ; otherwise, there are in0nitely many occurrences.

Now we modify the de0nition of a 0nite automaton, allowing it to output any string
(including the empty one) in the output alphabet when reading one character from input.
These devices are usually called 0nite transducers. Formally, a transducer’s transition
set is a subset of Q×;×O∗×Q. The output sequence on the run 〈q0; v0〉; : : : ; 〈qn; vn〉; : : :
now is the concatenation v0v1 : : : vn : : :. (See [15].)
De0ne the program of eKectively almost periodic sequence � to be a pair of two

programs 〈p1; p2〉 where p1 is a program computing �(n) given n, and p2 is a program
computing m and k given l (as in De0nition 3).

Corollary 4. Let A be a deterministic 4nite transducer with input alphabet ; and
output alphabet O, and �:N→ ;∗ be a sequence such that the output sequence A(�)

8 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

is in4nite. Then:
(1) if � is almost periodic, then so is A(�), and
(2) if � is e5ectively almost periodic, then A(�) is e5ectively almost periodic, and

the program for A(�) can be e5ectively constructed given the program for �.

Proof. The proof follows from Theorems 2 and 3. We decompose the mapping done
by the transducer into two: one will be a homomorphism and the other done by a 0nite
automaton.
De0ne f(�) as follows: the ith character of f(�) is a pair 〈�(i); qi〉, where qi is

the state of A when it reads the ith character in �. Obviously, f can be done by a
deterministic 0nite automaton. Then, de0ne g(〈�; q〉) as the string that A outputs when
it reads � in state q. Obviously, g is a homomorphism.
It is also clear that g(f(�)) = A(�). The eKectiveness statement immediately follows

from the mentioned theorems.
We also need to show that the programs for A(�) can be eKectively computed from

the program for �. To do this, note that the proofs of Theorems 2 and 3 actually
describe eKective procedures.

Let � and � be two sequences �:N → ; and �:N → O. De0ne a cross product
�× beta to be a sequence �× �:N→ ;×O such that (�× �)(i) = 〈�(i); �(i)〉.
We will show later that a cross product of two almost periodic sequences is not

always almost periodic. On the other hand, a cross product of two eventually periodic
sequences is eventually periodic.

Corollary 5. A cross product of an almost periodic sequence and an eventually peri-
odic sequence is almost periodic.

Proof. The proof immediately follows from Theorem 3 since the cross product can be
easily obtained as an output of a 0nite automaton reading the almost periodic sequence.

Now we turn to non-deterministic transducers. Denote by A[�] the set of all A’s
in0nite output sequences on the input sequence �.

Theorem 6 (Theorem of uniformization). Let A be a transducer and � an almost
periodic sequence.
(1) If A[�]
= ∅ then there exists a deterministic transducer B such than B(�) ∈

A[�] (so, A[�] contains an almost periodic sequence).
(2) If � is e5ectively almost periodic then given A and the program for � one can

e5ectively compute if A[�] is empty, and if it is not, e5ectively 4nd B.

Note that if � is not almost periodic then the uniformization could be impossible:
Let � be a sequence � = 01002000200000001 : : : (1s and 2s come in random order,

and the number of separating zeroes increases in0nitely). Let � be a sequence � =
11222222211111111 : : : (every zero in a group is substituted by the character following

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 9

that group). Then there exists a nondeterministic transducer A such that A[�] = {�},
but there is no deterministic transducer B such that B(�) = �.

Proof. Let us 0x for the following the sequence � and introduce some terms. Any pair
〈i; q〉 where i is an integer and q is a state of A, we call a point. We say that a point
〈i2; q2〉 is reachable from the point 〈i1; q1〉 if the transducer A can go from the state
q1 to the state q2 reading �[i1; i2], namely, there exists a sequence

〈si1 ; ui1〉; 〈si1+1; ui1+1〉; : : : ; 〈si2−1; ui2−1〉; si2
such that si1 = q1, si2 = q2, and for all i ∈ [i1; i2−1] the tuple 〈si; �(i); ui; si+1〉 is a valid
A’s transition. The sequence 〈si1 ; ui1〉; : : : ; 〈si2−1; ui2−1〉; si2 is called a path from 〈i1; q1〉
to 〈i2; q2〉, and the string ui1ui1+1 : : : ui2−1 is called the output string of this path. If there
exists a path from 〈i1; q1〉 to 〈i2; q2〉 with a nonempty output string, we say that 〈i2; q2〉
is strongly reachable from 〈i1; q1〉. We say that a point is strongly reachable from a
set of points if it is strongly reachable from some point in that set. Denote by Tj(i; q)
a set of points 〈j; q′〉 reachable from 〈iq〉. De0ne Qj(i; q) = {q′|〈j; q′〉 ∈ Tj(i; q)}.
Let 〈r0s0〉 be some point. We say that a sequence j0 = r0 ¡ j1 ¡ · · · ¡ jn ¡ · · ·

is correct with respect to 〈r0s0〉 if for every n ≥ 1 there exists a point 〈rnsn〉 such
that jn−1 ¡ rn ≤ jn, 〈rnsn〉 is strongly reachable from Tjn−1 (r0; s0), and Qjn(r0; s0) =
Qjn(rn; sn).

We sketch this on a 0gure. The dots represent points, the circle marked jn represents
Qjn(rn; sn) = Qjn(r0; s0), the wavy lines in the center of the “tube” picture paths, and
straight lines picture paths with a non-empty output string.
Say the point 〈0, the initial state of A〉 is an initial point. A sequence is called

correct if it is correct with respect to some point reachable from the initial point.
Introduce an equivalence relation “∼” on a set of all points:

〈i1q1〉 ∼ 〈i2q2〉 iff ∃i ≥ i1; i2 : Qi(i1; q1) = Qi(i2; q2):

This relation is obviously reTexive and symmetric. The transitivity property follows
from the fact that if Qi(i1; q1) = Qi(i2; q2) then for all j ¿ i Qj(i1; q1) = Qj(i2; q2).
This relation has another interesting property. If 〈i3q3〉 is reachable from 〈i2q2〉, 〈i2q2〉
is reachable from 〈i1q1〉, and 〈i1q1〉 ∼ 〈i3q3〉 then 〈i1q1〉 ∼ 〈i2q2〉 ∼ 〈i3q3〉. This is so
because for all i ≥ i3 we have Qi(i3; q3) ⊂ Qi(i2; q2) ⊂ Qi(i1; q1).
An amazing fact is that there can only be a 0nite set of equivalence classes, namely,

not more than 2N where N is the number of A’s states. If there were 2N +1 pairwise
non-equivalent points {t1; : : : ; t2N+1} then for a suSciently large i we would have 2N+1
pairwise diKerent sets Qi(t1), Qi(t2),. . . , Qi(t2N+1), and that is impossible.

10 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

Now we are ready to prove the important.

Lemma 7. A[�]
= ∅ i5 there exists a correct sequence.

Proof. If there is a correct sequence then surely A[�]
= ∅: on the 0gure we see the
path with a in0nite output string drawn in the center of the “tube.”
Now, suppose A[�]
= ∅. Fix some run 〈q0u0〉; : : : ; 〈qnun〉; : : : of A on � that has

in0nite output sequence u0u1 : : : un : : :. Consider the sequence of points 〈0q0〉; 〈1q1〉; : : : ;
〈nqn〉; : : : where each point is reachable from the previous. Then these points separate
into a 0nite set of equivalence classes:

{〈iqi〉|0 ≤ i ≤ i1};
{〈iqi〉|i1 ¡ i ≤ i2};

...

{〈iqi〉|im ¡ i}:

We see that all points 〈iqi〉 where i ¿ im are equivalent. Now we can construct a
correct sequence. Let r0 = im + 1, s0 = qr0 . We will construct two sequences jn and
〈rnsn〉 such that jn−1 ¡ rn ≤ jn, Qjn(rn; sn) = Qjn(r0; s0), and the point 〈rnsn〉 is
strongly reachable from Tjn−1 (r0; s0). The state sn will always be equal to qrn . Suppose
we already found rn−1 and jn−1. Let rn be any number such that rn ¿ jn−1 and the
point 〈rnqrn〉 is strongly reachable from Tjn−1 (r0; s0). We can 0nd such a point because
the output sequence of the path 〈iqi〉 is in0nite. Since 〈r0s0〉 ∼ 〈rnqrn〉, there exists a jn
such that Qjn(rn; qrn) = Qjn(r0; s0). By induction, we now construct a correct sequence
with respect to 〈r0qr0〉. Since that point is reachable from the initial point, we have
constructed a correct sequence. The proof of the lemma is complete.

Lemma 8. (a) If � is almost periodic and A[�]
= ∅ then there exists a correct
sequence j0; j1; : : : ; jn; : : : such that ∃$ ∀n (jn+1 − jn) ¡ $.

(b) If � is e5ectively almost periodic then given A and the program for � one
can 4nd out if A[�] is empty. If A[�]
= ∅, one can 4nd $ and a point 〈r0s0〉
reachable from the initial point such that there exists a correct sequence jn with
(jn+1 − jn) ¡ $.

Proof. Let us construct an auxiliary deterministic 0nite automaton C with the output
alphabet {0; 1}. Among its states we will have a state Rs for every state s of A.
We will need the following property of C. Denote by C〈rs〉(�) the output sequence

of C if we run it on � starting at time r in the state Rs (this sequence starts at index r;
one can imagine its 0rst r positions 0lled with zeroes). The property is that if there
exists a correct sequence (for A and �) with respect to the point 〈rs〉 then C〈rs〉(�) is a
characteristic sequence of one such sequence. Otherwise, C〈rs〉(�) contains only a 0nite
number of 1’s. By characteristic sequence of a sequence j0 ¡ j1 ¡ · · · ¡ jn ¡ · · ·

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 11

we understand the sequence {ai} where

ai =

{
1 if ∃n i = jn;

0 otherwise:

We describe the automaton C informally (omitting details regarding its states and
transitions).
At the time r the automaton remembers s and print 1. At the time i (i ¿ r) the

automaton remembers the following (we denote by j the last time less than i when C
printed 1):
(1) Qi(r; s),
(2) the set of states q ∈ Qi(r; s) such that the point 〈iq〉 is strongly reachable from

Tj(r; s), and
(3) the class of all sets Qi(l; q) where l ≤ i and the point 〈lq〉 is strongly reachable

from Tj(r; s).

The automaton prints 1 if it sees that one of the sets from the third item equals
to the set in the 0rst item. Otherwise, it prints 0. It is obvious that the information
remembered by the automaton is 0nite, and is bounded above by a function in the
number of states of A.
The needed property of C immediately follows from the fact that if there exists a

correct sequence with respect to the point 〈rs〉 then for all i ≥ r there exists a point
that is strongly reachable from Ti(r; s) and equivalent to 〈rs〉.
Now we are ready to prove the statement (a) of the lemma. Suppose A[�]
= ∅.

According to Lemma 7 there exists a correct sequence with respect to some point
〈r0s0〉 reachable from the initial point. Then C〈rs〉(�) is a characteristic sequence of
some correct sequence j0 ¡ j1 ¡ · · · . If � is almost periodic then so is C〈r0s0〉(�)
according to Theorem 3. It follows that there exists $ such that ∀n (jn+1 − jn) ¡ $.
Now we turn to the statement (b). To prove it, we build another auxiliary determin-

istic 0nite automaton D. We describe D informally, too. The idea is to 0nd a point
〈rs〉 such that there exists a correct sequence with respect to that point. To do this,
the automaton D at time i runs a copy of the automaton C starting in every point 〈is〉
reachable from the initial point. It is impossible for a 0nite automaton to remember
all these copies. But not all of these copies are diKerent. Namely, at some time it can
turn out that two copies are in the same state. Then these two copies are considered
“united” and D may forget one of them. We will make it forget the one that was
started later. So, at any time, D remembers a 0nite list of diKerent states correspond-
ing to remembered copies of C. The later the copy was started the bigger its number
in the list. Let D print a message “I am forgetting the copy number &” when D forgets
a copy. If some copy, say number &, should print 1, let D print a message “The copy
number & prints 1.” For convenience, let D print a message “I remember ' copies”
every time.
If � is eKectively almost periodic, then so is D(�), so given A and the program for

� we can compute the program for D(�).
Every started copy will either be forgotten at some time or will survive in0nitely.

In the latter case its number in the list will stop decreasing sometime. Let (be the

12 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

number of such “survivors”; suppose they are started in points t1; : : : ; t(. Let i0 be
the time when the numbers of “survivors” stop decreasing (and thus became equal
1; : : : ; (). Every later copy will eventually be forgotten, i.e. will unite with one of the
“survivors.” So, A[�]
= ∅ iK one of the “survivors” prints in0nitely many 1’s. In other
words, iK for some) ≤ (the automaton D prints in0nitely many messages “The copy
number) prints 1.”
If we know the program for D(�), we can 0nd the number ((it is less by one than

the smallest & such that D prints “I am forgetting the copy number &” in0nitely many
times), and know if there exists i ≤ (with the required property. So, we can know
whether A[�] = ∅. If A[�]
= ∅, we can 0nd i and the point ti. Then there exists a
correct sequence with respect to ti and we can 0nd $ (given a program for D(�)) such
that the copy number i prints 1 on every segment of length $, that is, there exists a
correct sequence jn such that for every n (jn+1− jn) ¡ $. This completes the proof of
the Lemma.

Now we 0nish the proof of Theorem 6. Suppose A[�]
= ∅ and � is almost periodic.
We should build a deterministic 0nite transducer B for that B(�) ∈ A[�]. According to
Lemma 8 we 0nd a point 〈r0s0〉 and a number $ such that there exists a correct (w.r.t.
the point 〈r0s0〉) sequence jn such that for every n (jn+1 − jn) ¡ $. (When � is eKec-
tively almost periodic, this can be eKectively found given A and the program for �.)
Let B work as follows. Up to the time r0 the transducer B prints an empty string.

At the time r0 the transducer prints an output string of any path from the initial point
to the point 〈r0s0〉. Then, B “marks” numbers jn, rn and states sn such that:
1. jn−1 ¡ rn ≤ jn,
2. 〈rnsn〉 is strongly reachable from Tjn−1 (r0; s0), and
3. Qjn(rn; sn) = Qjn(r0; s0).

To do this, the transducer remembers at the time i ≥ r0 (here we denote by r and
j the last positions marked as such):
1. �(i); �(i − 1); : : : ; �(i − 2$),
2. the last marked state s and a pair of numbers ($1; $2) such that i − $1 = j and

i − $2 = r,
3. Qi−$1 (r0; s0), Qi(r0; s0).

If i − $1 ¡ i − $2, then the transducer searches for the next “j”, so when it turns
out that Qi(r0; s0) = Qi(i − $2; s), it marks i as the new “j”. If i − $1 ≥ i − $2, then
the transducer searches for the next “r”. To do this, it searches Ti(r0; s0) for a point
strongly reachable from Ti−$1 (r0; s0), and, when it 0nds, marks the corresponding i as
the new “r” and the corresponding state at the time i as the new “s”. In this case,
besides, the transducer prints the nonempty output string of some path from the last
marked point 〈rs〉 to the newly marked point. In all other cases B prints an empty
string.
Since jn − rn−1 ¡ 2$, the remembered 2$ characters of � will suSce to know if

the current i should be marked as “r” or “j”, and to 0nd the needed output string.
The output sequence of B is a concatenation of an in0nite set of non-empty strings

u0u1 : : : un : : : such that u0 is an output string of a path from the initial point to 〈r0s0〉,

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 13

and for every n ¿ 0 un is an output string of a path from 〈rn−1sn−1〉 to 〈rnsn〉. It
follows that B(�) ∈ A[�].
Since B can be eKectively constructed, the proof is complete.

4. Generating almost periodic sequences. The universal method

In the paper [4] an interesting method of generating in0nite 0-1-sequences is pre-
sented. It is based on “block algebra.”

4.1. Block product

Let u; v be strings in the alphabet {0; 1} (we will use the symbol B for this alphabet
from this point onwards, and also write B-sequences in place of 0-1-sequences). The
block product u⊗ v is de0ned by induction on the length of v as follows:

u⊗ N = N

u⊗ v0 = (u⊗ v)u

u⊗ v1 = (u⊗ v) Ru;

where Ru is a string obtained from u by changing every 0 to 1 and vice versa. It is
easy to check that block product is associative and right-distributive with respect to
concatenation (that is, u⊗ (v⊗ w) = (u⊗ v)⊗ w, and u⊗ (vw) = (u⊗ v)(u⊗ w), but
not always (uv)⊗ w = (u⊗ w)(v⊗ w)).
De0ne the in0nite block product. Let un, n = 0; 1; : : : be a sequence of nonempty

strings in the alphabet B such that for n ≥ 1 un starts with 0. Then the product
⊗∈

n=0 un

is de0ned as the limit of the sequence of strings u0, u0 ⊗ u1,. . . ,u0 ⊗ u1 : : : ⊗ un; : : :.
Since for every n ≥ 1 un starts with 0, it follows that every string in this sequence is
a pre0x of the next string, so the sequence converges to some in0nite B-sequence.
In the paper [2] it is proved that for any sequence {un} of strings that start with

0 and contain at least two characters their block product
⊗∈

n=0 un is strongly almost
periodic. This fact allows us to prove that the cardinality of AP is continuum:
For a B-sequence ! de0ne �! =

⊗∈
n=0(0!(n)). Now the mapping ! �→ �! is an

injection of continuum into AP.

4.2. The universal method

Let ; be a 0nite alphabet.

De�nition 9. A sequence of tuples 〈ln; An; Bn〉 where ln is an increasing sequence of
natural numbers, and An and Bn are non-empty 0nite sets of non-empty strings in the
alphabet ;, is called ;-scheme if the following four conditions hold:
(C1) all strings in An have length ln,
(C2) any string in Bn has the form v1v2 where v1; v2 ∈ An, and every string from An

is used as vi in some string in Bn,

14 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

(C3) every string u in An+1 has the form v1v2 : : : vk where for each i ¡ k vivi+1 ∈ Bn

(and thus vi; vi+1 ∈ An) and for all w ∈ Bn ∃i ¡ k w = vivi+1, and
(C4) every string u from Bn+1 should have the following property: if u = v1 : : : vkw1 : : :

wk (vi; wi ∈ An), then vkw1 ∈ Bn

Note that since all strings in An have equal lengths, the representation u = v1 : : : vk
of a string u ∈ An+1 is unique, and so is the representation w = v1v2 of a string
w ∈ Bn. Also note that ln|ln+1. A ;-scheme is computable if the sequence 〈ln; An; Bn〉
is computable.

De�nition 10. We say that the sequence �:N → ; is generated by a ;-scheme
〈ln; An; Bn〉 if for all n ∈ N there exists kn such that for all i ∈ N �[kn + iln; kn +
(i + 2)ln − 1] ∈ Bn, that is, a concatenation of any two successive strings in the
sequence

�[kn; kn + ln − 1]; �[kn + ln; kn + 2ln − 1]; : : :

is in Bn.
The sequence is perfectly generated by the scheme if ln|kn.
The sequence is eKectively generated if the sequence kn is computable.

Proposition 9. Any scheme perfectly generates some sequence.

Proof. Let 〈ln; An; Bn〉 be any scheme. Consider an in0nite tree of strings. Its nodes
at nth level are strings of length ln, and the string x is the string’s y parent if x is a
pre0x of y.
At n’th level mark the nodes x for which the following condition holds:

∀i ¡ n∀j x[jli; (j + 2)li − 1] ∈ Bi:

(I.e. the strings that can be pre0xes of a sequence perfectly generated by the considered
scheme.) Let us show that if some node is marked, then all its predecessors are marked,
too. This follows, by induction, from properties (C3) and (C4).
There are in0nitely many marked nodes, because every string in An is marked. Hence,

due to the compactness of Cantor space, there exists an in0nite path in the tree with
all its nodes marked. Consider a limit sequence of this path. It is perfectly generated
by the scheme.

Theorem 10. (a) Either of the next two properties of a sequence �:N→ ; is equiv-
alent to the almost periodicity of �:
• � is generated by some ;-scheme,
• � is perfectly generated by some ;-scheme.
(b) Either of the next two properties of a computable sequence �:N → ; is

equivalent to the e5ective almost periodicity of �:
• � is e5ectively generated by some computable ;-scheme,
• � is e5ectively and perfectly generated by some computable ;-scheme.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 15

Proof. We start with proving (a). Suppose � is generated by some ;-scheme 〈ln; An; Bn〉.
Let us prove that � is almost periodic. Take a string u ∈ ;∗ such that u has in0nitely
many occurrences in �. We prove that for some N every �’s segment of length N has
an occurrence of u. Denote the length of u by |u|. Take n such that ln ≥ |u|. Let us
prove that every string in An+1 contains u as a substring. Take kn from De0nition 10.
Since u has in0nitely many occurrences in �, there exists an occurrence of u to the
right of kn, starting, say, on a segment [kn + iln; kn + (i+1)ln − 1]. Since |u| ≤ ln, the
whole occurrence is contained in the segment [kn + iln; kn + (i + 2)ln − 1]. According
to the same De0nition, this segment of � is in Bn. So, some string in Bn contains u.
It follows that every string in An+1 contains u since every string in An+1 contains all
strings from Bn (see (C3)).
Now, due to the de0nition of generation and to (C2), (C3), there exists kn+1 such

that for every i

�[kn+1 + iln+1; kn+1 + (i + 1)ln+1 − 1] ∈ An+1

and thus every �’s segment of length 3ln+1 to the right of kn+1 contains at least one
occurrence of some string from An+1, and thus, an occurrence of u.
Now suppose � is almost periodic. We construct a scheme 〈ln; An; Bn〉 that perfectly

generates �. Say that the occurrence [i; i + |u| − 1] of the string u ∈ An ∪ Bn in � is
good if ln|i. Let

An = {u ∈ ;ln |u has in0nitely many good occurrences in �};
Bn = {u ∈ ;2ln |u has in0nitely many good occurrences in �}:

We still need to de0ne ln. We do this by induction. Let l0 = 1. To 0nd an appropriate
value for ln+1 having ln, we prove the following:

Lemma 11. There exists a number l′ such that every �’s segment of length l′ contains
a good occurrence of every string in Bn.

Proof. Let string x in the alphabet {1; 2; : : : ; ln} be 1; 2; : : : ; ln; 1; 2; : : : ; ln, and a se-
quence � in the same alphabet to be an in0nite concatenation xxx : : :. De0ne the cross
product of string of equal lengths similarly to the cross product of in0nite sequences.
Then u is in Bn iK u × x has in0nitely many occurrences in � × �. According to
Corollary 5, the sequence � × � is almost periodic, so there exists l′ such that every
segment of length l′ has an occurrence of u× x for every u ∈ Bn. So, every segment
of � of length l′ has a good occurrence of every u ∈ Bn. This completes the proof of
the Lemma.

Let ln+1 be a number such that ln|ln+1 and every �’s segment of length ln+1 has a
good occurrence of every string from Bn.
Let us prove that 〈ln; An; Bn〉 is a scheme. Condition (C1) is obviously met. The 0rst

part of condition (C2) says that every string in Bn consists of two strings from An. This
is surely true since every good occurrence of the string v1v2 has a good occurrence of
each of the strings v1 and v2. The second part states that every string from An is used

16 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

as part of Bn. If v1 ∈ An, then v1 has in0nitely many occurrences. Consider all strings
of length ln that immediately follow these occurrences. There are 0nitely many types
of these strings, so at least one of them, say, v2, occurs in0nitely many times. Then
the string v1v2 has in0nitely many good occurrenes, and thus is in Bn.
To check condition (C3), it is suScient to prove that if u ∈ An+1, u = v1v2 : : : vk

where |vi| = ln, k = ln+1=ln, then for each i ¡ k vivi+1 ∈ Bn and for every string
w ∈ Bn there exists i ¡ k such that w = vivi+1.
Since u ∈ An+1, u has in0nitely many good occurrences in �. Hence, for all i ¡ k

vivi+1 has in0nitely many occurrences in � with a start of the form cln+1 + (i− 1)|vi|.
But this expression is a multiple of ln, so vivi+1 has in0nitely many good occurrences
in �, so vivi+1 ∈ Bn for all i ¡ k.
Now suppose w ∈ Bn. The string u has a good occurrence in � (even in0nitely

many ones). Let one of these be [j; j+ ln+1 − 1]. According to the choice of ln+1, the
segment [j; j+ ln+1− 1] has a good occurrence of the string w, so for some i we have
vivi+1 = w.
Is remains to check condition (C4). Suppose u = v1 · · · vkw1 · · ·wk ∈ Bn. Then u

has in0nitely many good occurrences in �. It follows that vkw1 has in0nitely many
occurrences starting at position which is multiple of ln−1 and thus vkw1 ∈ Bn−1.

Now we prove that � is perfectly generated by the constructed scheme. For every n
we let kn be the multiple of ln such that every string u× x that has only 0nite number
of occurrences in �× �, does not have any occurrences to the right of kn.
(b) It is easy to check that the proof in both directions is eKective.

Now we describe the universal method of generating strongly almost periodic se-
quences. Say that 〈ln; An〉 is a strong ;-scheme if for ln and An the property (C1)
holds, and for every n every string u ∈ An+1 is of the form u = v1v2 : : : vk where
vi ∈ An and for every w ∈ An there exists i ¡ k such that w = vi. Also, we say that �
is generated by a strong scheme if for every i and n �[iln; (i + 1)ln − 1] ∈ An.
The theorem analogous to the Theorem 10 is as follows:

Theorem 12. The sequence � is strongly almost periodic i5 it is generated by some
strong ;-scheme.
The proof of this theorem is analogous to the proof of Theorem 10, although more

simple, and is omitted here.

Now we prove that the block product is strongly almost periodic.

Proposition 13. Let un be a sequence of B-strings each starting with 0 and containing
at least two characters. Then the sequence

⊗∞
n=0 un is generated by some strong B-

scheme.

Proof. Let � =
⊗∞

n=0 un. Consider two cases:

(a) Starting from some n all the strings un do not contain 1. Then � has the form
vvv : : : for some v and thus is periodic. The scheme can be constructed trivially.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 17

(b) For an in0nitely many n’s the string un contains at least one 1. Then � can be
represented as

⊗∞
n=0 wn where each wn starts with 0 and contains 1. We prove

this by using the associative property of the block product. The product

u0 ⊗ u1 ⊗ · · · ⊗ un ⊗ · · ·
can be divided into groups

(u0 ⊗ u1 ⊗ · · · ⊗ un1−1)⊗ (un1 ⊗ · · · ⊗ un2−1)⊗ · · ·
so that each group contains and least one term that contains 1. Letting wi be the block
product of the ith group, we get wi start with 0 and contain at least one 1.

Now we de0ne the strong B-scheme generating � =
⊗∞

n=0 wn. Let xn =
n⊗

i=0
wi,

ln = |xn|, and An = {xn; Rxn}. Since for every n the string wn contains both 0 and 1,
〈ln; An〉 is a strong B-scheme. It is obvious that � is generated by this scheme.
The proposition is proved.

4.3. Dynamic systems

Let V be a topological space, A1; : : : ; Ak be pairwise disjoint open subsets of V ,
f:V → V be a continuous function, and x0 ∈ V be a point such that its orbit
{fn(x0)|n ∈ N} lies inside

⋃k
j=0 Aj. De0ne the sequence �:N → {1; : : : ; k} by the

condition fn(x0) ∈ A�(n). We will show here two conditions yielding that � is strongly
almost periodic and one yielding that � is eKectively and strongly almost periodic. (We
say that � is eKectively and strongly almost periodic if it is computable and given u we
can compute n such that either u does not occur in � or every �’s segment of length
n has an occurrence of u.) We will 0rst formulate the three c orresponding theorems
and then prove them altogether.

Theorem 14. If V is compact and the orbit of any point of V is dense in V , then �
is strongly almost periodic.

Theorem 15. If V is a compact metric space and f is isometric, then � is strongly
almost periodic.

It follows from the Theorem 15 that if x=1 is irrational, then the sequence {the sign of
sin nx} is strongly almost periodic: to prove this, one can take a circle for the V and
a rotation with the angle x for the f.
Before we formulate the third theorem, 0x some de0nitions. The set T s = [0; 1)s is

called s-dimensional torus. Fix the following metric on T s. Let the mapping 2:Rs → T s

be de0ned by equality 2(x1; : : : ; xs) = ({x1}; : : : ; {xs}) where {x} denotes the fractional
part of x. Then 3(a; b) = min{|a′ − b′| : 2(a′) = a; 2(b′) = b}.

A set A ⊂ Rs is called algebraic if it is a solution set of some system of polynomial
inequalities (either strict or not) with integer coeScients. A set is called semi-algebraic
if it is a union of a 0nite class of algebraic sets. A set A ⊂ T s is called semi-algebraic
if there exists a semi-algebraic B ⊂ Rs such that A = B ∩ T s.

18 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

Suppose v ∈ Rs. The mapping fv:T s → T s de0ned by the equality fv(x) = 2(x+v)
is called a shift by the vector v. This mapping is surely isometric.

Theorem 16. Let V be s-dimensional torus, the point x0 have algebraic coordinates,
f a shift by a vector with algebraic coordinates, and Ai open semi-algebraic sets.
Then � is e5ectively and strongly almost periodic.

Proof (of Theorems 14, 15 and 16). We start with proving Theorem 14. We need to
show that if a string u ∈ {1; : : : ; k}∗ has an occurrence in � then u is contained in any
suSciently long segment of �. Let u be of length l and have an occurrence in �, say,
u = �[i0; i0 + l− 1]. Denote by Bu the open set

{x ∈ V |x ∈ Au(1); f(x) ∈ Au(2); : : : ; fl−1(x) ∈ Au(l)}:

Then fi0 (x0) ∈ Bu, so Bu is not empty. Since every orbit is dense in V , we have
∀x ∈ V ∃i ∈ Nfi(x) ∈ Bu. This means V ⊂ ⋃∞

i=0 f
−i(Bu). Since each set f−i(Bu)

is open and V is compact, there exists m ∈ N such that V ⊂ ⋃m
i=0 f

−i(Bu). That is,
∀x ∈ V ∃i ≤ mfi(x) ∈ Bu. In particular, ∀n∃i ≤ mfn+i(x0) ∈ Bu, so any �’s segment
of length m+ l+ 1 contains an occurrence of u.
Let us prove Theorem 15 by reduction to Theorem 14. Let V1 be a closure of the

orbit of x0. Then V1 is also compact. Denote the metric of V by 3.

Lemma 17. f(V1) ⊂ V1.

Proof. Suppose x ∈ V1. We prove that f(x) ∈ V1. Let 4 ¿ 0. There exists k ∈ N such
that 3(fk(x0); x) ¡ 4g. Hence 3(fk+1(x0); f(x)) ¡ 4 because f is isometric. Since
this holds for every 4 ¿ 0, f(x) ∈ V1.

Lemma 18. For all x ∈ V1 the orbit of x is dense in V1.

Proof. Let x ∈ V1, y ∈ V1, 4 ¿ 0. We need to show that there exists n such that
3(fn(x); y) ¡ 4. There exist k and l such that 3(fk(x0); x) ¡ 4=3, 3(fl(x0); y) ¡ 4=3
(since x; y ∈ V1). We have two cases.
Case 1: l ≥ k. Take n = l− k. We have

3(fl−k(x); y) ≤ 3(fl−k(x); fl(x0)) + 3(fl(x0); y)

= 3(x; fk(x0)) + 3(fl(x0); y) ¡ 4=3 + 4=3 ¡ 4:

Case 2: l ¡ k. First we prove that there exists a number l′ ≥ k such
that 3(fl′(x0); fl(x0)) ¡ 4=3. Then 3(fl′(x0); y) ¡ 24=3 and we can reason as
in case 1.
Since V is compact, for any � ¿ 0 there exists N such that among any N point

there exist two with a distance less than �. Take N corresponding to � = 4=3k.
Among the points f(x0); f2(x0); : : : ; fN (x0) there are two with a distance less than
4=3k. Let these be fi0 (x0) and fi0+r(x0) (where r ¿ 0). Then 3(fi0 (x0); fi0+r(x0)) ¡

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 19

4=3k, and since f is isometric, for any i we have 3(fi(x0); fi+r(x0)) ¡ 4=3k.
In particular,

3(fl(x0); fl+r(x0)) ¡ 4
3k ;

3(fl+r(x0); fl+2r(x0)) ¡ 4
3k ;

...
3(fl+(k−1)r(x0); fl+kr(x0)) ¡ 4

3k

and hence 3(fl(x0); fl+kr(x0)) ¡ 4=3. Now we can take l′ = l+ kr ≥ k. The proof of
the lemma is complete.

Now we can prove Theorem 15. For the space V1, the function f1 = f|V1 , the point
x0 and the sets A′

i = Ai ∩ V1 all conditions of Theorem 14 hold. Hence � is strongly
almost periodic and the Theorem 15 is proved.
Let us switch to proving Theorem 16. Since T s is a compact metric space and the

shift is isometric, the resulting sequence is almost periodic according to Theorem 15.
Our goal is eKectiveness issues.

Lemma 19. If V is a compact metric space, f is isometric, Ai are open subsets of
V , and the following conditions hold (here when we talk of a point in the orbit, it is
meant to be represented by its number):
(a) Given a point of the orbit in one of the sets Ai, one can calculate the number

i of the set containing this point and a positive rational number 4 such that all
the point’s 4-neighborhood lies in the set Ai.

(b) Given 4, one can e5ectively 4nd an 4-net1 in the the orbit of x0.
(c) Given two points in the x0’s orbit, one can approximate the distance between

them.
(d) Given u one can compute if u occurs anywhere in �.
Then, � is e5ectively and strongly almost periodic.

Proof. Denote xn = fn(x0).
We are given u and we should 0nd such m that every �’s segment of length m

contains an occurrence of u. Suppose u occurs in �, say, u = �[p; q] (we can 0nd out
if it occurs anywhere using (d), and if it does, 0nd the needed index by trying them
in turn). Find the points xp; : : : ; xq and for each point xk 0nd a number 4k such that
all the 4k -neighborhood of this point is included in the set A�(k) (we can do this using
(a)). Let 4 = min{4k} and let � = 4=4.
Construct �-net in the orbit of x0 using (b). Starting at x0, start calculating points

of the orbit until every point of �-net is approximated with an error ¡ � (here we use
(c)). Suppose we needed to calculate l points of the orbit. Then m = 2l. Let us prove
this.

1 Here under 4-net in the set A we mean a 0nite set of points ai ∈ A such that every point of A is closer
than 4 to at least one point ai .

20 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

Suppose we have some segment of � of length m starting at index r. Consider the
corresponding points in the orbit, xr; : : : ; xr+m−1. Take the middle point of this segment,
xr+l, and 0nd the point y of �-net that is closer than � to it. Find the point in the
starting segment of � that is closer than � to y. Suppose it has the number n ¡ l.
Then the point xr+l−n is closer than 2� to x0.
Now perform a similar operation with a point xp (the starting point of a known

occurrence of u). Namely, 0nd a point z in the �-net that is closer than � to xp and
0nd a point in the starting segment of � that is closer than � to z. Suppose it has the
number s ¡ l. The point xs is closer than 2� to xp.
Remember that the point xr+l−n is closer than 2� to x0. Thus, we have that the point

xr+l−n+s is closer than 4� to xp. Since 4� = 4, the point xr+l−n+s is closer than 4 to
xp, so there is an occurrence of u starting at index r + l− n+ s.
The lemma is proved.

Now we need to show that in the situation of Theorem 16, conditions (a)–(d) of
Lemma 19 hold.
One major construct that is used heavily in the following proof is the Tarski The-

orem [11]. It states that if we have a 0rst-order formula (x1; : : : ; x�) in the signa-
ture {+;×;¡} and representations of algebraic numbers a1; : : : ; a�, we can 0nd out if
 (a1; : : : ; a�) is true in the ordered 0eld of real numbers. Call a set A representable if
there exists a 0rst-order formula (x) that is true iK x ∈ A. Surely any semi-algebraic
set in the torus is representable.
Also, we need some properties of algebraic numbers. The representation of an al-

gebraic number (is 〈Q; a; b〉 where Q is a polynomial with integer coeScients such
that Q(() = 0 and a ¡ b is rational numbers such that the interval (a; b) contains (
and does not contain any other root of Q. With this representation, one can eKectively
add, subtract, multiply and divide algebraic numbers. (It can easily be done using the
Tarski theorem.) Also, given a representation of (one can eKectively 0nd a prime
polynomial P such that P(() = 0. The proof of this fact is well known. Following is
the sketch, for details see, for example, [14].
First, note that if P = QR (where P, Q and R are all polynomials with ratio-

nal coeScients), then the common denominator of Q’s coeScients is less than the
common denominator of P’s coeScients, and the same holds for R. Then, since
the coeScients of a polymonial are symmetric polynomials in its roots, and the set
of roots of Q is a subset of the set of roots of P (same for R), the Q’s coeS-
cients are bounded in absolute value by some computable functions of the P’s co-
eScients. So, we have only a 0nite set of possible values for the Q’s coeScients.
Trying all the possible variants, we understand if there exists a polynomial Q that
divides P.
Let us check the conditions:

(a) Given a point with algebraic coordinates (all points in the orbit have algebraic
coordinates since both x0 and the shift vector have algebraic coordinates) we can
write a formula i(() stating that any point at a distance less than (is in Ai.
Then, enumerating all rational numbers, we can estimate from below the needed
neighborhood radius.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 21

(c) All points involved will have algebraic coordinates, so the distance will be alge-
braic, and thus it can be approximated.

Checking (b) and (d) is harder. We will do this after studying the structure of V1

(the closure of x0’s orbit) more thoroughly.

Lemma 20. V1 is a union of a 4nite number of a;ne subspaces of equal dimensions.

Proof. Take a point a ∈ V1. If there exists a neighborhood of a that does not contain
any other points of V1, then the orbit is 0nite.
Otherwise, there are points in the orbit at deliberately small distances from a. Con-

sider straight lines going through a and these points, and the directions of these lines
(in other words, the points where these lines meet a unit sphere centered at a). Since
sphere is compact, there is a non-empty set of limit directions. (Such directions w that
for every 4 ¿ 0 and � ¿ 0 there exist in0nitely many points in the orbit such that
they are closer than 4 to a and the corresponding directions are closer than � to w.)
Consider the corresponding straight lines. We prove that their aSne cull is contained
in V1. Further we will intermix references to V1 and the corresponding object in Rs

because their connection is trivial and it is generally evident what object is meant.
First, we prove that every limit line is contained in V1. Take a point x ∈ Rs on the

line. There exists a point y in the orbit such that 3(a; y) ¡ 4=4 and the angle between
the vectors (a; x) and (a; y) is less than 4=const‖x− a‖. Also, there exists a point z in
the orbit such that 3(a; z) ¡ 4=const3(a; y). Then, the angle between (a; x) and (z; y)
is still very small (less than 4=const‖x − a‖).
We need to make sure that z is earlier in the orbit than y. If z is later, we change y

as follows. Find a point y′ in the orbit later than z such that 3(y′; y) ¡ 4=const3(z; y),
so the angle changes little, and the line (z; y′) is still close to (a; x). Let the new y be
this y′.
Now we have that the angle between (z; y) and (a; x) is less than 4=const‖x − a‖,

and 3(z; y) ¡ 4=2. Let us traverse z along the orbit until it becomes y. In the same
number of steps y becomes another y1 such that y1 − y = y − z. So, y1 lies on the
line (z; y). Repeating the operation, we get to the neighborhood of x. The nearest to x
point of the sequence yn is at distance not more than the sum of the distance between
x and the line (z; y) (which is less than 4=2 according to our construction) and the
distance between two points in the sequence (which is 3(z; y) ¡ 4=2). So, we have
approximated x by the point in the orbit with error not more than 4. This proves that
x ∈ V1.

Up to this point, we know that every limit line is contained in V1. Our next goal
is to prove that their aSne cull is contained in V1. Suppose we proved that a cull of
some of the lines is contained in V1. Take a new limit line that is linearly independent
of the considered cull (say, (a; b)) and prove that the new cull is still contained in V1.
Consider a point x ∈ Rs in the new cull and project it along (a; b) to the previous cull.
Denote the projection x1. Using the same technique as above, 0nd two points z and y
in the orbit that are close to a, and such that the angle between (z; y) and (a; b) is less
than 4=const‖x − x1‖. Also, we need z to be earlier in the orbit than y. Find a point
x′1 in the orbit that is later in the orbit than z and is closer to x1 than 4=2. Traverse

22 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

z along the orbit until it becomes x′1. Then y becomes y′. We have 3(y′; x′1) ¡ 4=2,
and the angle between (x′1; y

′) and (x1; x) is less than 4=const‖x − x1‖. Traversing x′1
to become y′ and further, as above, we 0nd a point in the orbit that is closer than 4
to x. We just added a new line to the cull. This procedure increases the dimension of
the cull, so it can be performed only 0nitely many times.
Now we prove that all points of the orbit that are not contained in the cull are not

closer to the cull than some a positive distance.
Assume for any 4 ¿ 0 there exists a point x(4) in the orbit that is closer than 4 to

the cull but is not contained in it. Take 4 ¿ 0. Take x(4) and a point y in the orbit
and in the cull such that y is close to the orthogonal projection of x(4). Traverse x
and y along the orbit until y becomes some point y′ close to a. Then x becomes x′

such that (y′; x′) is almost orthogonal to the cull. Hence (a; x′) is almost orthogonal
to the cull. As 4 → 0 we have x′ → a, and (a; x′) tend to be perpendicular to the cull.
So, we found a new limit line, contradiction.
Now every point of the orbit is contained in an aSne subspace of the same dimension

d (since every one of them can be obtained from another by a shift; this also shows
that all subspaces are parallel). Consider an orthogonal complement to these subspaces
and project them to this complement. Ever subspace projects into a point. The distance
between any two of these points is more than some positive number. So, there is only
a 0nite number of these aSne subspaces.

Note that if W is one of the aSne subspaces such that W ∩T s
= ∅ and W ∩T s ⊂ V1,
then also 2(W) ⊂ V1. This follows from the proof of Lemma 20.
We want to 0nd these aSne subspaces given f and x0. Without loss of generality

we can assume that x0 = 0 since we always can shift the origin of the torus to x0. Let
the translation vector v have coordinates (t1; : : : ; ts).

Lemma 21. Let d′ = dimQ{t1; : : : ; ts; 1} − 1. Then the dimension d of the a;ne sub-
spaces equals d′.

Proof. Recall that d′ is the cardinality of the minimal subset of coordinates ti such
that all the coordinates can be rationally expressed in terms of these coordinates
and 1.
First, we prove that d ≤ d′. Without loss of generality, we assume that the 0rst

k − 1 = s− d′ coordinates t1; : : : ; tk−1 can be expressed in terms of the last d′: tk : : : ts.
Write these expressions:

t1 = �1k tk + · · ·+ �1s ts + �10 · 1;
...

tk−1 = �k−1
k tk + · · ·+ �k−1

s ts + �k−1
0 · 1:

Consider these relations for the components of the vector vn. We see that t′i =
nti −mi · 1. So the relations are the same except the coeScients �i

0 diKer. If we make
the denominator of all fractions �i

j the same, we will see that the denominator of �i
0

remains the same when going from f to fn (this is because mi are integers). Since all

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 23

the t′i are less than 1, the absolute values of coeScients �i
0 are bounded above. Hence

there is only a 0nite number of possible values for �i
0. So, for any n the vector vn that

is equal to fn(x0) (since x0 = 0) lies in one of the 0nite number of aSne subspaces
of dimension d′:

T1 = �1kTk + · · ·+ �1s Ts + �1
j

...
Tk−1 = �k−1

k Tk + : : :+ �k−1
s Ts + �k−1

j

(here Ti are coordinates and �i
j is the jth possible value for �i

0). Hence d ≤ d′.
Now we prove that d ≥ d′. Project the whole picture onto the last d′ coordinates

k; : : : ; s. If d ¡ d′ then each aSne subspace of V1 projects into subspace of dimension
not more than d, so they all cannot cover the whole coordinate subspace. Let us prove
that the projection of V1 covers all the subspace generated by the coordinates k; : : : ; s.
More precisely, we prove the following: if we project the whole picture onto a

coordinate subspace of dimension l ≤ d′, the image will cover all the mentioned
subspace. We do this by induction on l. The induction base is l = 0. This case is
obvious. Assume we proved the statement with some value of l. Let us prove it with
l+1. Project the picture onto last l coordinates. According to the induction hypothesis,
the image has the dimension l. So, the projection onto the last l + 1 coordinates has
a dimension of either l + 1 or l. We need to prove that it is l + 1. Assume, for the
contrary, that the dimension is l, that is, the projection of V1 is a union of parallel
aSne subspaces of dimension l. They are not parallel to any coordinate axis (because
if they were, we could project the picture along this axis, and the spaces would project
into spaces of dimension l− 1, which cannot be true due to the induction hypothesis).
The subspaces intersect sth coordinate axis by a point. The distances between adjacent
points are the same. Since the coordinate axis can be regarded as a circle (because we
are in the torus!), this distance is rational. Write the equation of j’th subspace

ts = �′s−lts−l + · · ·+ �′s−1ts−1 + �′
j:

Since for diKerent j the diKerence between �′
j is rational, and the point 0 is contained

in one of them, then all �′
j are rational.

Consider the subspace containing 0 and its intersection with a two-dimensional
coordinate subspace of coordinates s and q (where q ≥ s − l). Its equation is ts =
�′qtq. Consider a vector in this subspace (but outside the torus) with q-coordinate of 1.
Denote its s-coordinate by xs. We have

xs = �′q · · · 1:
The equivalent vector in the torus has q-coordinate of 0, and s- coordinate of xs − m
for some integer m. It is contained in some aSne subspace number j, so

xs − m = �′q · 0 + �′
j:

Since �′
j is rational, then the number

�′q = �′
j + m

24 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

is rational too. So, all the coeScients �′q are rational. This contradicts the fact that
{tk ; : : : ; ts; 1} are linearly independent over Q.

Now we are ready to prove thate conditions (b) and (d) of Lemma 19 hold in our
case.
First, 0nd a primitive element (in the 0eld Q[t1; : : : ; ts; (x0)1; : : : ; (x0)s], represent

all coordinates of the vectors v and x0 as polynomials in (and 0nd d = d′ and
the coeScients of all equations of aSne subspaces—except for the coeScients �i

j
(remember the beginning of the proof of Lemma 21). We can 0nd all possible values
for �i

j, but we still need to know which give us the needed subspaces of V1. To 0nd
these, we compute x0; x1; : : : ; xN (note that we write xn for fn(x0)). The number N is
chosen such that these points constitute a 4-net (for some suSciently small 4) in every
subspace that has at least one point of x0; : : : ; xN+1. Then we can say that we have all
the subspaces. Suppose we then jump (at nth step) from a known subspace to a not
yet known. There was a point xm of the 4-net near to xn. Then there is a point xm+1

near to xn+1. But xn+1 is in the new subspace, and 3(xm+1; xn+1) = 3(xm; xn) ¡ 4, so
xm+1 is also in the new subspace (remember that subspaces are separated by a positive
distance), so really this subspace is not new, but old.
Hence we can 0nd the closure of the orbit and thus build an 4-net in it. So, condition

(b) is met. Knowing V1, we can also meet condition (d). Suppose we have a string u
and want to know if it occurs anywhere in the sequence �. We construct the set

Bu = {y|y ∈ T s; 2(y) ∈ Au(1); : : : ; 2(y + (|u| − 1)v) ∈ Au(|u|)}

This set is representable since Ai is semi-algebraic sets and v has algebraic coordinates.
We can, given u, v and Ai, 0nd a formula (x) that is true iK x ∈ Bu. Then, we can
construct a formula stating that there is a point y in the closure of the orbit such that
y ∈ Bu. Then, we use the Tarski theorem to 0nd out if there exists such point. So,
condition (d) is also met, and this, 0nally, proves the Theorem 16.

5. Interesting examples

Theorem 22. For any m ∈ BbbN there exists a set A of m + 1 e5ectively almost
periodic B-sequences such that the cross product of any m sequences from A is
e5ectively almost periodic, and the cross product of all m+1 sequences is not almost
periodic.

Theorem 23. For any m ∈ BbbN there exists a set A of m + 1 e5ectively almost
periodic B-sequences such that the cross product of any m sequences from A is
e5ectively almost periodic, and the cross product of all m+1 sequences almost periodic
but not e5ectively almost periodic.

A homomorphism h: ;∗ → O∗ is called a collapse if for any character � ∈ ;
|h(�)| = 1 and |O| ¡ |;|.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 25

Theorem 24. For any m ∈ BbbN there exists a computable sequence �:BbbN →
{1; : : : ; m} such that for any collapse h the sequence h(�) is e5ectively almost periodic.
Such sequence can be constructed to conform to one of the two conditions:
(a) � is not almost periodic,
(b) � is almost periodic, but not e5ectively almost periodic.

Proof (of Theorems 22, 23 and 24). We say that 〈ln; An; Bn〉 is pseudoscheme if for
any collapse h the tuple 〈ln; h(An); h(Bn)〉 is a scheme. We start by proving Theo-
rem 24(a). To do this, we construct a pseudoscheme 〈ln; An; Bn〉 and a non-almost
periodic sequence � such that for any collapse h h(�) is eKectively generated by
〈ln; h(An); h(Bn)〉.
Let ;m be the alphabet {1; : : : ; m}. We will identify permutations over ;m with

strings of length m in the alphabet ;m without equal characters.
De0ne a sequence ln and auxiliary sets Ru

n ⊂ ;ln
m (where u ∈ Bn+1). The sets Ru

n for
diKerent u ∈ Bn+1 should be pairwise disjoint and have equal cardinalities.
We let l0 be m, R0

0 be the set of even permutations over ;m, and R1
0 be the set of

odd permutations over ;m.
Suppose ln and the sets Ru

n are already de0ned so that the sets Ru
n are pairwise disjoint

and have equal cardinalities. Denote Ov
n = Rv0

n ∪ Rv1
n for all v ∈ Bn. We say that the

string u is a complete concatenation of strings for a 0nite set M if u = v1v2 : : : vk is
a concatenation of strings from M such that for every two strings w1; w2 ∈ M there
exists an index i ¡ k such that w1 = vi and w2 = vi+1. Let kn+1 be a minimal k such
that there exists a complete concatenation of strings from Ov

n (since Ov
n have equal

cardinalities, kn does not depend on u). Let ln+1 = ln(kn+1 + 2).
For u ∈ Bn+2 we de0ne Ru

n+1 as follows. Let 4; � be the last two characters of u
sonthat u = u′4�. Let

Ru
n+1 = {v1 : : : vkn+1w1w2|

v1 : : : vkn+1 is a complete concatenation from Ou′
n ; w1 ∈ Ru′4

n ; w2 ∈ Ru′�
n }:

It is obvious that Ru
n+1 are pairwise disjoint and have equal cardinalities. We will

name Ov
n zones of rank n and Ru

n regions of rank n. So, Rv4
n is a region of zone Ov

n
when 4 ∈ B. We thus have 2n pairwise disjoint zones of rank n, each being a disjoint
union of two regions of rank n.
Let = = v0; v1; : : : be a sequence of B-strings such that |un| = n. Let A=

n = Ovn
n , and

let B=
n be A=

nA
=
n, a set of pairwise concatenations of strings from A=

n. We prove that
〈ln; A=

n; B
=
n〉 is a pseudoscheme.

Lemma 25. For any collapse h, for any n and any string u1, u2 of length n+1 there
exists a bijection 2:Ru1

n → Ru2
n such that ∀x ∈ Ru1

n h(x) = h(2(x)) (in particular,
h(Ru1

n) = h(Ru2
n)).

Proof. We use induction over n.
Let n = 0. If u1 = u2, let 2 be an identity function. If u1 = 0, u2 = 1, we take

i; j ∈ ;m such that h(i) = h(j) (such i and j do exist because h is a collapse). De0ne
2 by the equalities 2(i) = j, 2(j) = i, and 2(k) = k for k
= i; j.

26 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

Suppose the statement for n is already proved. Then for any u1; u2 ∈ Bn there exists
a bijection 2:Ou1

n → Ou2
n that preserves h. We construct a bijection for any two regions

of rank n+1. Let u141�1 and u242�2 be any two strings of length n+2, where |ui| = n,
4i; �i ∈ B. Then every string in Ru141�1

n+1 can be represented as x = v1 : : : vkn+1w1w2 where
vi ∈ Ou1

n , w1 ∈ Ru141
n , w2 ∈ Ru1�1

n . By the induction hypothesis, there exist bijections
21:Ou1

n → Ou2
n , 22:Ru141

n → Ru242
n , and 23:Ru1�1

n → Ru2�2
n , that preserve h. Let

2(x) = 21(v1)21(v2) : : : 21(vkn+1)22(w1)23(w2):

Then 21(v1) : : : 21(vkn+1) is a complete concatenation of strings in Ou2
n , thus 2(x) ∈

Ru242�2
n+1 . Obviously, 2 is a bijection from Ru141�1

n+1 to Ru242�2
n+1 .

Since 21, 22 and 23 preserve h, so does 2.

It follows from this lemma that the images of all zones under any collapse h coincide,
i.e. h(Ou1

n) = h(Ou2
n). It is now obvious that 〈ln; h(A=

n); h(B
=
n)〉 is a scheme for any =

and h.
Now we construct a sequence of B-strings = = v0; v1; : : : and non-almost periodic se-

quence � such that for any collapse h the scheme 〈ln; h(A=
n); h(B

=
n)〉 eKectively generates

h(�). Let

vn =
{
0n if nis even;
10n−1 if nis odd:

For every n ∈ BbbN choose a string xn from A=
n = Ovn

n and let

� = x0x1 : : : xn : : : :

Denote the starting index of xn by sn (so, xn = �[sn; sn + ln − 1]).
Let us prove that � is not almost periodic. Suppose it is almost periodic.
It is easy to check that for every 4 ∈ B every string in Ou4

n+1 is a concatenation of
strings from Ou

n . So, for every n the string xn can be regarded as a concatenation of
strings from either O00:::0

n′ or O10:::0
n′ for any n′ ¡ n (the choice depends on the evenness

of n).
Every string in O10:::0

n is a concatenation of strings from O1
1 (let us call them blocks).

For n ≥ 2 every string from O10:::0
n contains every string from O1

1 among its blocks.
So, every string from O1

1 has in0nitely many occurrences in �.
Consider one of these occurrences, say, [i; j]. Call this occurrence nice if i ≡

s1(mod l1). We can see that every occurrence of a string from O1
1 as a block in some

xn is always nice. So, every string from O1
1 has in0nitely many nice occurrences. Fix

one such string y. It has the form

y = v1 : : : vk1w1w2;

where vj ∈ ON
0 , w1 ∈ R1

0, w2 ∈ R0
0 ∪ R1

0 = ON
0 . Using an argument analogous to

that in the proof of Lemma 11, we can show that y has a nice occurrence on every
suSciently long segment of �. So, the string y has a nice occurrence within every xn
for a suSciently large n, that is, there is a block in xn equal to y. Let us show that y

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 27

cannot be a block of xn for even n. Since for even n the string xn is in O00:::0
n , all the

blocks are from O0
1, that is, they have the form

t11 : : : t
1
k1r

1
1r

1
2 ;

where tj ∈ ON
0 , r1 ∈ R0

0, r2 ∈ R0
0 ∪ R1

0 = ON
0 . Hence we have w1 = r1 which obviously

is a contradiction since w1 is an odd permutation and r1 is an even one.
Part (a) of Theorem 24 is proved.
Now turn to the part (b). Fix some enumerable, but undecidable set E ⊂ BbbN .

De0ne a sequence of B-strings vn as follows. Let |vn| = n and let vn(i) = 1 if the
number i is generated in less than n steps of enumerating E. Then vn is a computable
sequence having the following property: for every i there exists L such that for all
n ≥ L vn(i) = E(i), but L cannot be computed given i. Let An = Ovn

n , and Bn = AnAn.
Then, as it was shown above, 〈ln; An; Bn〉 is a pseudoscheme. Let (as above)

� = x0x1 : : : xn : : : ;

where xn is lexicographically 0rst string in An. It is clear that � is computable. For
any collapse h h(�) is eKectively generated by 〈ln; h(An); h(Bn)〉, so h(�) is eKectively
almost periodic.
Let us show that � is almost periodic. Let en be nth pre0x of a characteristic sequence

of E, that is, |en| = n, and en(i) = E(i). Take Cn = Oen
n and Dn = CnCn. Then

〈ln; Cn; Dn〉 is a scheme because en+1 = enE(n) and every string in OenE(n)
n+1 is a complete

concatenation of strings from Oen
n . Let us prove that � is generated by the scheme

〈ln; Cn; Dn〉. Take n ∈ BbbN . We need to 0nd m ∈ BbbN such that for all j ∈ BbbN
�[m+ jln; m+(j+2)ln − 1] ∈ Dn. There exists M ≥ n such that for all i ≥ M vi starts
with en. Hence xi is a concatenation of strings from Oen

n = Cn. It follows that for all
j ∈ BbbN we have �[m+jln; m+(j+1)ln−1] ∈ Cn, and �[m+jln; m+(j+2)ln−1] ∈ Dn

for some m.
Let us prove that � is not eKectively almost periodic. Assume � is eKectively almost

periodic. We will obtain that E is decidable then. This will easily follow from this
property of �: en is a unique string such that every string from Oen

n has in0nitely
many nice occurrences in �. (Here the word “nice” means that the start position of the
occurrence is equal to sn modulo ln.) Let us prove this property.
For a suSciently large i the string vi starts with en, so xi contains every string from

Oen
n , and so � has in0nitely many nice occurrences of these strings. If some w
= en,

denote by j the number of the 0rst character where they diKer. Then for a suSciently
large i the string vi starts with en[0; j], and xi is a concatenation of strings from Oen[0;j]

j+1 .
Using the same technique we used for proving the part (a), one can prove that a string
from Ow[0;j]

j+1 cannot be a nice substring of a concatenation of strings from Oen[0;j]
j+1 .

Hence, � contains only a 0nite number of nice occurrences of strings from Ow
n .

Theorems 22 and 23 follow from Theorem 24.
Let us construct a sequence � in the alphabet Bm+1 that is not almost periodic, but

becomes eKectively almost periodic under every collapse. Let �i be i’th projection in
the cross product B×B× · · · ×B, having � = �1 × : : :× �m+1. Then the cross product

28 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

of every m sequences from the set {�1; : : : ; �m+1} results from a collapse of �, and is
eKectively almost periodic.
Theorem 23 is proved in a similar way.

6. Almost periodic sequences and Kolmogorov complexity

In this section we study the connection between almost periodicity and Kolmogorov
complexity. For the de0nition see [13]. Here we consider simple complexity K(x).
Let � be an almost periodic sequence and �n its pre0x of length n. We shall study

K(�n) as a function of n.
Consider the following simple example: divide a circle into k arcs with k points

(with computable coordinates). Take a real number 2 such that 2=21 is irrational.
De0ne �(i) as the number of arc containing the point i2. (Note that i2 can be one of
the delimiting points. However, this can happen only a 0nite number of times. So, we
can think that this does not happen at all.) Then, the constructed sequence � is almost
periodic according to Theorem 15.

Theorem 26. For the constructed sequence �,

K(�n) ≤ O(log n)

Proof. Denote the division points by x1; : : : ; xk . For every n mark every point on the
circle with the number of arc it will go to after being multiplied by n. We will have
nk arcs corresponding to the k arcs of initial picture. Call them n-arcs. To tell what
arc will contain n2 it is suScient to know what n-arc contains 2.
Now to describe the nth pre0x of � we can use the numbers of m-arcs containing

2 for all m ≤ n. To know all these numbers mark the boundaries of all m-arcs for
all m ≤ n. There are n(n+ 1)=2k boundaries. They divide the circle in n(n+ 1)=2k
pieces. We need to know the piece containing 2. To write its number, we need
O(log(n(n+ 1)=2k)) bits.
The program that prints �n incorporates this number and the number n. Let us

describe how it works. It needs to calculate the picture of the boundaries. Since the
coordinates x1; : : : ; xk are computable, we can only estimate the boundaries, and not
calculate them precisely. So, for any two boundaries the program estimates them (with
higher and higher precision) until it understands that one of them is larger than another.
The only problem is that some boundaries can be equal — in this case the algorithm
will never stop. So, we need to include the description of these cases in the algorithm.
The collision between xi1 and xi2 happens if for some integers a1, a2 and a3 we have

a1xi1 = a2xi2 + a31:

For any i1 and i2 the triples (a1; a2; a3) form a subgroup in Z3. This subgroup is
generated by at most three vectors (for proof see [14]). So, the program will also
incorporate these vectors for all pairs (i1; i2). When it needs to know if two particular
boundaries coincide, it uses the corresponding vectors and gets the answer since the

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 29

0rst-order theory of 〈Z;+〉 is decidable. The length of the descriptions for the vectors
is constant in n.
The length of the program is log n + O(log([n(n+ 1)]=2k)) + O(1) (the last term

is the length of the invariant section). Since log([n(n+ 1)]=2k) ≤ 2 log n+ log k, we
have

K(�n) ≤ O(log n):

The proof is complete.

For simplicity, we will stick to the alphabet B. It is evident that K(�n) ≤ n+O(1)
(we can incorporate �n itself in the program). The following theorem shows that this
bound cannot be reached for an almost periodic sequence.

Theorem 27. For any almost periodic sequence � there exists a positive 4 such that

K(�n) ¡ (1− 4)n+O(1)

Proof. First, prove that there exists a string of type I (occurring in � only 0nitely
many times). Either string 1 or string 0 belongs to type II. We assume, without loss of
generality, that this is the string 0. There exists a number l such that every substring
of � of length l contains at least one zero. Thus, a string consisting of l+1 1’s occurs
only 0nitely many times. Let u be a string of minimal length that occurs in � only
0nitely many times. Choose an index q such that there is no occurrence of u to the
right of q. From now on, we will consider only the portion of � to the right of q.
If |u| = 1 (which implies that � consists entirely of ones or zeroes), then K(�n) ≤

O(log n), because �n is eKectively determined only by n, and we can incorporate n in
the program using O(log n) bits.
Let u′ be a string resulting when we omit the last character in u. Assume w.l.o.g.

that we omitted 0, so u = u′0. We know that every occurrence of u′ is followed by 1.
The string u′1 occurs in0nitely many times in � (because if it had only 0nitely many
occurrences, u′ would have had only 0nitely many occurrences, which contradicts the
assumption that u is the shortest string occurring only 0nitely many times). Hence
there exists m such that every �’s substring of length m contains at least one instance
of u′1.
Let us show a “compression” algorithm that will encode �n using (1 − 4)n +O(1)

bits. Divide �n into blocks in the following way: 0rst block has length q and is written
directly; following blocks have lengths m and are encoded; the last block of length m′

less than m is also written directly. The encoding procedure 0nds the 0rst occurrence
of u′1 in the block and writes the block replacing this occurrence of u′1 with u′.

Now we need to show that this encoding does not lose information (i.e. the original
string can be eKectively reconstructed) and that we can build a program that outputs
�n and has length less than (1− 4)n+O(1).
The decoding procedure is obvious. The 0rst block of length q is just left as it is.

For every encoded block (it has length m − 1 because exactly one occurrence of u′1

30 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

was replaced with u′) we 0nd the 0rst occurrence of u′ and insert a 1 after it. Finally,
the last incomplete block is also left as it is.
Now let us calculate the length of the program to output �n. It will contain the

0rst and the last blocks of the encoded string, the string u, the number m, and the
encoded blocks. The length of the program excluding the encoded blocks is bounded
from above by a constant. In the remaining part for every m characters in � we write
only m− 1 bits. So, for n− q−m′ characters we will need (n− q−m′)m− 1=m bits.
Thus

K(�n) ≤ (n− q− m′)
m− 1
m

+O(1) ≤ n
(
1− 1

m

)
+O(1):

This proves the theorem.

We will show that for every 4 ¿ 0 there exists a strongly almost periodic sequence
� such that K(�n) ¿ n(1 − 4). This result is proved in the remaining part of this
section, namely,

Theorem 28. For any 4 ¿ 0 there exists a strongly almost periodic sequence � such
that

K(�n) ≥ (1− 4)n+O(1)

for all n.

Actually, it is suScient to prove this with O(log n) additional term. Indeed, if we
have done this, then by decreasing 4 we get also O(1), since �n ¿ C log n for large n.

6.1. The construction

Let us build a scheme 〈ln; An〉 that will generate our sequence.
De0ne A0 to be the set of all strings of length l0. Let

An = {v1 : : : vkn |vi ∈ An−1; ∀a ∈ An−1 ∃i: a = vi} ;
where kn = ln=ln−1. The values for kn (and for ln, respectively) as well as for l0, will
be chosen later.
First, we prove the following Lemma:

Lemma 29. Let A be an alphabet. Denote by B the set of all strings of length k that
contain all characters in A. Then for any 4 ¿ 0, and su;ciently large k the following
holds:

|B| ≥ (1− 4)|A|k :

Proof. Let us take a random k-character string in the alphabet A and calculate the
probability of it containing not all characters of A. It is composed of |A| − 1 diKerent
characters, and

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 31

Pr(the string does not contain i′th character)

=
(|A| − 1)k

|A|k =
(
1− 1

|A|
)|A|k=|A|

≤ 2e−k=|A|:

Making k very large, we easily obtain

Pr(the string does not contain i′th character) ≤ 4
|A|

and

Pr(the string contains not all characters) ≤ 4:

Hence, at least a (1− 4) fraction of strings in Ak arein B, so |B| ≥ (1− 4)|A|k .

The scheme is built in a way such that

|An| ≥ (1− 4n)|An−1|kn :
We can achieve this due to the last lemma for any values for 4n. We will determine
these values later.
The sequence � that is generated by this scheme is constructed in the following way.

Consider a set F of all sequences � such that

�[iln; (i + 1)ln] ∈ An (1)

for all i, n.
Consider also a probabilistic distribution p on the space of all sequences in the

alphabet A that is uniformly distributed over the set F . The sequence that has complex
pre0xes is chosen randomly with respect to p. According to the Levin–Schnorr theorem
(see [12]), if � is random with respect to p, then

KM (�[0; n]) ≥ − log p(W�[0;n]) +O(1);

where W�[0;n] is a cone at �[0; n], i.e. a set of all sequences � such that �[0; n] =
�[0; n], and KM is a Kolmogorov monotone complexity (see [13]). Since KM (x) ≤
K(x) +O(log |x|), this gives us the desired result if we prove that − log p(W�[0;n]) ≥
(1− 4)n.
To prove this, we consider a sequence of distributions p0; p1; : : : . Let p0 be a uniform

distribution. Let pj be a distribution that is uniform over the set of sequences satisfying
condition (1) for all i and all n ≤ j. Obviously pj → p as j → ∞. First, let us consider
the transition from pj−1 to pj.
We need to compute the change in probability of W�[0;n]. To do so, we 0rst take

n = lj and look at W�[0;lj] under pj−1. Consider the sets Wx for |x| = n. Some of them
(those that correspond to x’s which do not conform to the condition in (1)) have zero
probability, while others’ probabilities are equal. Under pj some of the sets Wx lose
their probability due to the fact that their x’s do not conform to the new condition, and
the others’ probabilities increase (but they are still equal among the sets with non-zero

32 A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33

probabilities). Namely, there were |Aj−1|kj strings that conformed to the conditions of
step j − 1, and only |Aj| strings that conform to the conditions of step j. Since

|Aj| ≥ (1− 4j)|Aj−1|kj ;
the amount of increase in probability is not more than 1=1− 4j.
If lj|n, then obviously the probability increases that amount for each block of length

lj, so the total amount is
(
1=1− 4j

)n=lj .
Now consider the case when lj � n. Denote by t the least multiple of lj larger than

n. For any x the set Wx contains Wx′ for each x′ that continues x and has the length of
t. Under pj some of these sets lose their probability and some increase, but not more

than
(
1=1− 4j

)t=lj times. So, the amount of increase in probability of Wx is not more
than (

1
1− 4j

)t=lj

=
(

1
1− 4j

)�n=lj	
:

Combining the results, and taking the product over j = 0; : : :, we obtain

p∞(W�[0;n]) ≤ p0(W�[0;n])
(

1
1− 41

)�n=l1	
· · ·
(

1
1− 4j

)⌈ n
lj

⌉
· · · :

Since �n=lj� ≤ n=lj + 1, the bound can be rewritten as

(
1

1− 41

)
· · ·
(

1
1− 4j

)
· · ·
((

1
1− 41

)1=l1

· · ·
)n

︸ ︷︷ ︸
C

×
((

1
1− 41

)1=l1

: : :
(

1
1− 4i

)1=lj

: : :

)n

︸ ︷︷ ︸
Dn

;

where C and D are constant factors. Here, C can be made deliberately close to 1 by
choosing values for 4j, and D ≤ C since 1=1− 4j ¿ 1 and 1=lj ¡ 1. So,

p∞(W�[0;n]) ≤ p0(W�[0;n])Cn+1 = 2−nCn+1 = 2−n+(n+1) log C;

and thus

− log p∞(W�[0;n]) ≥ n− (n+ 1) log C ≥ n(1− 2 log C):

Since C can be made deliberately close to 1, log C can be made deliberately small,
and we 0nally obtain

KM (�[0; n]) ≥ − log p∞(W�[0;n]) +O(1) ≥ n(1− 4)

for any 4 ¿ 0, which is exactly what we wanted.

A. Muchnik et al. / Theoretical Computer Science 304 (2003) 1–33 33

Uncited references

[1,3,5,6]

Acknowledgements

The authors would like to thank Nikolai Vereshchagin for writing initial text of this
paper and Alexander Shen for help and suggestions.

References

[1] Yu.L. Ershov, Decidability Problems and the Constructive Models, Nauka, Moscow, 1980.
[2] K. Jacobs, Maschinenerzeugte 0-1-Folgen, Selecta Mathematica II, Springer, Berlin, Heidelberg, New

York, 1970.
[3] S. Kakutani, Ergodic theory of shift transformations, Proc. V. Berkely Simp. Prob. Stat., Vol. II, part

2, 1967, p. 407–414.
[4] M. Keane, Generalized Morse sequences, Z. Wahrseheinlichkeitstheorie verw. Geb. Bd 22 (S) (1968)

335–353.
[5] R. Loos, Computing in algebraic extensions, Compting (Suppl.4) (1982) 173–187.
[6] M. Morse, Recurrent geodesies on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921)

84–100.
[7] M. Morse, G.A. Hedlund, Symbolic dynamics I, Amer. J. Math 60 (1938) 815–866.
[8] M. Morse, G.A. Hedlund, Symbolic dynamics II — Sturmian trajectories, Amer. J. Math 62 (1940)

1–42.
[9] A.L. Semenov, Logic theories of unary functions over natural numbers. Izv. AN SSSR. Ser. Matem.

47 (3) (1983) 623–658 (in Russian).
[10] M. Sipser, Introduction to the Theory of Computation, PWS, Boston, Part 1, 1997, pp. 31–123.
[11] A. Tarski, A Decision Method for Elementary Algebra and Geometry, Berkley, Los-Angeles, 1951.
[12] V.A. Uspensky, A.L. Semenov, A.Kh. Shen’, Can an individual sequence of zeroes and ones be random?

Russian Math. Surveys 45 (1) (1990) 121–189.
[13] V.A. Uspensky, A.Kh. Shen, Relations between verieties of Kolmogorov complexities Math. Systems

Theory 29 (1996) 271–292.
[14] B.L. Van der Waerden, Algebra, Springer, Verlag, Berlin, 1991.
[15] A. Weber, On The valuedness of 0nite transducers, Acta Inform. 27 (8) (1989) 749–780.

	Almost periodic sequences
	Introduction
	Equivalent definitions
	Closure properties of AP
	Generating almost periodic sequences. The universal method
	Block product
	The universal method
	Dynamic systems

	Interesting examples
	Almost periodic sequences and Kolmogorov complexity
	The construction

	Acknowledgements
	References

