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A central problem of mathematical logic and the theory of 

algorithms is the problem of the decidability of logical 

theories, that is the problem of constructing an algorithm which 

distinguishes which formulae of a given language belong to the 

theory (are true in a given semantics, provable in a given 

deductive system etc.) 

The study of decision problems has shown that a large 

number of naturally arising theories are undecidable, the 

desired algorithm does not exist. At the same time, from the 

point of view of applications, either inside or outside 

mathemat~cs, the most important cases are exactly those for 

whlch such an algorithm can be constructed. 

One of the basic results concerning the decidability of 

logical theories is the Theorem of the decidability of the 

monadic second order theory of several successors. This Theorem, 

proven by M.O.Rabln in 1969 C11, yields as simple corollaries 



many of the results on decidability known to that time. Since 

then, it has been used many times in applications, namely in 

proving the decidability of non-classical logics, such as the 

logic of programs. 

However, in his lecture at the International Congress of 

Mathematics held in Nice in 1970, M.O.Rabin formulated the 

problem of simplifying his proof. The first problem of his 

lecture [21 is: 

" 1 .  Find a simpler proof for Theorem 2(ii), possibly avoiding 

the transfinite induction used in [21." (Theorem 2(ii) is the 

key statement of Rabin's proof, [21 is paper [ I 1  of our 

references). Indeed, Rabin's proof, beyond the technical 

complications, has a more fundamental inconvenience. In order to 

obtain a perfectly constructive result, it uses a very strong 

instrument - the principle of transfinite induction. 

In 1978, the author of this paper gave a new and simpler 

proof of Rabin Theorem without using transfinite induction. This 

proof was presented in the course on decidable theories given in 

1978/79 at the Faculty of Mechanics and Mathematics of Moscow 

State University by A.L.Semenov and it was the subject of the 

author's graduation paper. The present version differs only in 

small details from the version given there. 

Another proof, close to ours, was presented in May, 1982 at 

the Symposium on the Theory of Computing [31. Some time ago, 

D.Muller and P.Schupp proposed the use of alternating finite 

automata to prove the Rabin Theorem. 



61. THE MONADIC THEORY OF TWO SUCCESSORS AND FINITE AUTOMATA ON 

TREES. 

Let us give the definition of the monadic theory of two 

successors, denoted by SZS, which 1s formed by all formulae of a 

certain language true in a certain interpretation. The language 

contains both individual and set (= monadic predicate) 

variables; its atomic formulae are of the form x  E Q. L ( x , y ) ,  

R(x.y) ,  where x , y  are individual variables and Q is a set 

variable. Both individual and set variables can be bounded by 

quantifies in the formulae of the language. To describe the 

interpretation we consider the binary tree of finite words in 

the alphabet {L,R}: 

Words in this alphabet will be called also vertices of the tree. 

Values of individual variables are vertices of the tree, values 

of set variables are arbitrary sets of vertices. The 

lnterpretatlon of atomic formulae 1s the following: x  E Q states 

that vertex x  is a member of Q, R(x.y) is interpreted as the 

fact that word y is obtained by adding letter R to the end of x .  

L(x,y)  is understood in a similar way. Theory S2S IS thereby 

fully described. 



The proof proceeds in the same way as Rabin's, converting 

the problem of the decidability of SZS into that of 

demonstrating some properties of finite automata. What is new is 

the method of demonstrating the most complicated of these 

properties. The object of this paper is to present this method. 

To make our exposition self-contained, we shall recall all 

necessary definitions concerning finite automata. 

We shall use the varlant of the theory S2S in which 

formulae contain only set variables and atomic formulae are of 

the form PEQ, Vert(P), R(P,Q), L(P,Q). Their interpretation is 

as follows. Vert(P) ind~cates that P is a one-element set; PEQ 

indicates that P is one-element and its unique element belongs 

to Q; R(P,Q) and L(P,Q) mean that P and Q are one-element, 

P={x}, Q={y} and x,y satisfy R(x,y) (L(x,y), respectively). It 

is obvious that this variant of S2S is equivalent to the 

preceding one from the point of view of decidability. 

Let Z be an alphabet. A 1- t ree  is a binary tree whose 

vertices are labeled by the letters of Z, 1.e. a total mapping 

from the set of all vertices to I. We shall define below the 

notion of an automaton on Z-trees and the notion of acceptance 

of a Z-tree by an automaton. In this way, to each automaton 

corresponds a set of all Z-tree accepted by the automaton. Such 

sets of Z-trees will be called recognizable. 

Let us associate with any set of vertices of a binary tree 

a IO,l}-tree assigning 1 to the vertices of this subset and 0 

elsewhere. Likewise, with each n-tuple IP,, . . .  P,> of sets of 



v e r t i c e s ,  we a s s o c i a t e  a {o. 1)"- t ree .  A s e t  of n - tup les  of the  

form <P, ,  . . .  Pn> w i l l  be c a l l e d  recogn t zab le  i f  i ts a s s o c i a t e d  

s e t  of {O, I ) " - t rees  is recognizable .  

Thegrx-em-lL Let A(Pl ,  . . . ,Pn)  be a  formula of t heory  SZS,  a l l  

parameters of which are  among P , ,  . . . , P C  Then t h e  s e t  o f  a l l  

{ O , l l n - t r e e s  correspondtng t o  those  t u p l e s  of va lues  o f  

P I . .  . . ,Pn which make A(Pl .  . . . ,Pn )  t r u e  t s  r ecogn i zab le .  The 

correspondtng automaton can be e f f e c t i v e l y  cons t ruc ted  whenever 

A ( P , ,  . . . ,P,) i s  g i ven .  

The proof of t h i s  Theorem proceeds by induct ion on t h e  

s t r u c t u r e  of formula A. The main difficulty here  i s  t o  cons t ruc t  

f o r  a g iven automaton U another automaton Z. which accepts  

precisely those  t r e e s  which a r e  not accepted by U .  A new method 

of doing t h i s  c o n s t r u c t i o n  forms t h e  b a s i s  p a r t  of t h i s  paper 

( 8 3 ) .  

To prove t h e  d e c i d a b i l i t y  of S Z S ,  it is s u f f i c i e n t  t o  have, 

i n  a d d i t i o n  t o  t h i s  Theorem, an a lgor i thm deciding whether or 

not t h e  s e t  of t r e e s  accepted by t h e  automaton i s  empty. Such an 

a lgor i thm is given i n  [ I ] .  In  t h e  p resen t  paper we g i v e  t h e  more 

s imple  method f o r  c o n s t r u c t i n g  of such a lgor i thm ( 9 2 ) .  

Let  us now proceed t o  some d e f i n i t i o n s  and remarks 

concerning f i n i t e  automata 

Automata on o-words 

We begin  wi th  t h e  important not ion of an automaton on 

o-words, even though i n  t h i s  paper it plays  only  an a u x i l i a r y  



r o l e .  

I f  1 i s  an  a l p h a b e t ,  an a-word over Z is an  i n f i n i t e  

sequence of l e t t e r s  of 1. An automaton V on  a-words is g iven  by:  

1 )  a  f i n i t e  s e t  S  of s t a t e s ;  t h e  e lements  of  subsets of 

S) w i l l  be  c a l l e d  macros ta tes ;  

2)  a  t a b l e  of t r a n s i t i o n s ,  i . e .  a  s u b s e t  PcSxZxS; f o r  

< s , a , s ' > ~ P ,  we s a y  t h a t  i f  t h e  automaton 9.l 1s i n  s t a t e  s when 

r ead ing  l e t t e r  a then  i t  can move t o  s t a t e  s f ;  

3) a  s u b s e t  SocS of I n i t i a l  s t a t e s ;  

4) a  s u b s e t  ~c2' of f  l n a l  macros t a t e s .  

An automaton is c a l l e d  d e t e r m i n i s t i c  ~ f  l t  has  e x a c t l y  one 

i n i t i a l  s t a t e  and i t s  t a b l e  of transitions 1s t h e  graph of an 

everywhere de f ined  f u n c t i o n  from SxZ t o  S (being i n  any s t a t e  

and r e a d i n g  any l e t t e r  of Z, t h e  automaton can move t o  e x a c t l y  

one s t a t e ) .  

Let  9.l be an  automaton on a-words over Z and l e t  A be an 

o-word over 1. A run of 9.l o n  A 1s an l n f i n l t e  sequence of s t a t e s  

which may occur when V r eads  A .  There may be many runs  a s  we1 1  

a s  none. But i t  is c l e a r  t h a t  f o r  a  d e t e r m i n i s t i c  automaton,  

t h e r e  1s always e x a c t l y  one run  on t h e  g iven  a-word. More 

p r e c i s e l y ,  a  run  is such a  sequence (a-word) s o s ,  of s t a t e s  

of U t h a t  so  1s an  l n l t i a l  s t a t e  ( i . e .  s O ~ S O )  and,  f o r  each i ,  

l f  U 1s i n  s t a t e  s i  and r eads  a L ,  then  i t  can  move t o  s t a t e  

s i + , .  We can associate wi th  any a-word i t s  l i m i t  - t h e  s e t  of 

a l l  symbols occurring In i t  an  l n f i n i t e  number of t i m e s .  A run  

whose limlt 1s a  f l n a l  niacrostate is c a l l e d  accep t ing .  We s a y  

t h a t  V a c c e p t s  an o-word A l f  t h e r e  i s  an  a c c e p t i n g  run  of V on 

A .  Otherwise, we say  t h a t  U r e j e c t s  A .  I n  such a  way, t o  every  



automaton t h e r e  corresponds a  s e t  of w-words, namely t h e  s e t  of 

a l l  w-words accepted by t h i s  automaton. Such a  s e t  of w-words is 

c a l l e d  recognizable. I t  is well-known ([41)  t h a t  any 

recognizable  s e t  can be accepted by a  d e t e r m i n i s t i c  automaton. 

Automata on t r e e s  

We r e c a l l  t h a t  a  b inary t r e e  the  v e r t l c e s  of which a r e  

l a b e l l e d  by t h e  l e t t e r s  of an alphabet 1 i s  c a l l e d  tree over 1 

(or 2 - t r e e ) .  An automaton on I - t r e e s  is given by 

1 )  a  f i n i t e  s e t  S  of states with a  d i s t i n g u i s h e d  i n i t i a l  

s t a t e  s o & ;  ( subse t s  of S  w i l l  be c a l l e d  macrostates a s  b e f o r e ) ;  

2)  a  table of transitions - 1 . e .  a  subse t  of t h e  s e t  

Sx2xSxS. 

Element < s , a , s f , s " >  of t h i s  s e t  w i l l  be represen ted  by the  

fol lowing scheme: 

A scheme belonging t o  t h e  t a b l e  of t r a n s i t i o n s  of U is c a l l e d  a  

transitton of U and we say t h a t ,  i f  i t  happens t h a t  a t  a  c e r t a l n  

v e r t e x .  U 1s i n  s t a t e  s and reads  a ,  then it may be a t  the  

v e r t i c e s  immediately succeeding t h i s  v e r t e x  in  s t a t e s  s ' , s " ;  

3) a  l i s t  of f t nu1 macrostates (each of them being,  of 

course ,  a  subse t  of S) . 

Given an automaton on a  1 - t r e e ,  t h e r e  a r e  many posstble 



runs of the automaton on the tree. Each run 1s an assignment of 

states to the vertlces of the binary tree according to the table 

of transitions and such that the inltial state is assigned to 

the root of the tree. More precisely, a run of II on 1-tree A is 

an S-tree H satisfying the following condition: the initla1 

state 1s at the root of H, and if x is an arbitrary vertex of 

the binary tree which in A is labelled by a  and in H 1s labelled 

by s ,  and if the vertices xL, xR of run H are respectively 

labelled by s f  and s " ,  then < s , a , s f s " >  is an element of the 

table of trans~tions of 21. Now any run has many llniit 

macrostates (which is not the case for the automata on w-words): 

there is one for each path. More precisely, let xoxl... be an 

infinite path in the binary tree (1.e. a sequence of vertices in 

whlch x0=h and x L + ,  is one of the two immediate successors of 

xL). If a run H and a path are given, then the letters which 

label the vertices lying along the path form an o-word. The 

llmit of this w-word (i.e. the set of states occurring in it 

infinitely many times) is called the limit macrostate of the run 

correspondtng to the given path. A run is called accepting if 

all limit macrostates (correspondlng to all paths) are final. 

We say that an automaton accepts a tree if there exlsts an 

accepting run, i.e. a run for which all the limlt macrostates 

corresponding to all paths are flnal. Otherwise, when for each 

run there exists a path whose limit macrostate is not final, we 

say that the automaton rejects the input tree. A set of trees is 

called recogntzable if there exists an automaton accepting all 

the trees of thls set and no others. As we said above, our alm 

is to prove (a) that the problem of emptiness of automate set of 



trees is solvable and (b) that the complement of any 

recognizable set a is recognizable and that the corresponding 

automaton can be constructed effectively from the automaton 

accepting a. The remaining part of the present paper is devoted 

to these proofs . 

92. THE PROOF OF SOLVABILITY OF EMPTINESS OF AUTOMATE SET OF 

TREES 

In this paragraph we shall construct an algorithm, which 

given an automaton on trees decides whether the set of trees 

recognized by this automata is empty, and which, moreover, finds 

the regular tree in this set, if the set isn't empty (the 

definition of a regular tree is given in the following two 

1 ines) . 

Let us give the defin~tion of a regular Z-tree. In this 

definition the notion of a finlte deterministic transducer is 

used. A finite transducer on words is a finite synchronous 

autonlaton with output. It has two alphabets: the input one and 

the output one. After reading current letter of the input 

alphabet the transducer outputs one letter from the output 

alphabet. The output letter depends on the input letter and on 

the current state of the automaton. The transducer outputs also 

one letter before reading the Input word (we'll call this letter 

i n t t t a l ) .  Thus a finite transducer can be defined by the input 

alphabet Z, output alphabet A ,  the set of states S, the Initial 

state So,  the initial letter and the set of transitions. 
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Formally,  t h e  s e t  of t r a n s i t i o n  is a  everywhere de f ined  

f u n c t i o n  from S x Z  i n t o  S x A .  

DefJpJtJop, A I - t r e e  is r e g u l a r  i f  t h e r e  is a  f i n i t e  

t r ansduce r  w i th  t h e  input  a lphabe t  { L , R }  and ou tpu t  a lphabe t  Z 

t h a t  a f t e r  r e a d i n g  any word u over { L , R l  o u t p u t s  t h e  mark of t h e  

v e r t e x  u i n  t h i s  t r e e .  (Thus t h e  mark of t h e  r o o t  w i l l  be t h e  

i n i t i a l  l e t t e r . )  

Any t r ansduce r  s a t i s f y i n g  t h i s  d e f i n i t i o n  w i l  

t h e  t r ansduce r  g e n e r a t i n g  t h e  t r e e .  

Theorem-Z, 1)  There is an a lgor i thm t h a t  g iven 

1  be c a l l e d  

an  autonlaton 

on Z- t r ees  d e c i d e s  whether t h e  s e t  recognized by t h e  automaton 

i s  empty. 2) Any nonempty r ecogn izab le  s e t  of Z - t r ees  has  a  

r e g u l a r  Z - t r ee  and i f  t h i s  s e t  is recognized by an  automaton 

wi th  n s t a t e s  then  t h e r e  is a  t r ansduce r  w i th  n! s t a t e s  

g e n e r a t i n g  a  I - t r e e  i n  t h i s  s e t .  

Proof, a )  F i r s t l y ,  l e t  us proof t h e  e x i s t e n c e  of a  

t r ansduce r  g e n e r a t i n g  a  I - t r e e  i n  r ecogn izab le  nonempty s e t  of 

Z - t r ees .  T h i s  w i l l  be proved by induc t ion ,  t h e  parameter of 

i nduc t ion  is t h e  number of s t a t e s  of t h e  automaton on t r e e s  t h a t  

r ecogn izes  t h e  s e t .  In  order  t o  make t h e  induc t ion  s t e p  we must 

prove a  more gene ra l  a s s e r t i o n .  Let  us s t a t e  i t .  Let  us 

in t roduce  t h e  no t ion  of a  I - t r e e  wi th  dead ends .  Let  D be a  

f i n i t e  s e t  d i s j o i n t  wi th  I .  The elements of D w i l l  be c a l l e d  

dead-ends . 
Q g f ~ n ~ t i o n .  A I - t r e e  with dead-ends from D i s  any s u b t r e e  

of t h e  whole b i n a r y  t r e e  each v e r t e x  of which has  e i t h e r  0 sons  

( i s  a  l e a f )  o r  2 s o n s ,  t h e  leaves  of which a r e  marked by symbols 

from D and t h e  i n t e r n a l  v e r t i c e s  of which a r e  marked by l e t t e r s  



from 1. 

E v i d e n t l y  eve ry  1 - t r e e  is a l s o  a  2 - t r e e  wi th  dead-ends from 

D ( f o r  any D) . 

Let  us  g l v e  t h e  d e f i n i t i o n  of a  I-automaton wl th  dead-ends 

from D. The on ly  d i f f e r e n c e  wl th  a  Z-automaton is t h a t  a  

1-automaton wl th  dead-ends from D can  have t r a n s i t i o n s  of t h e  

form 

where p  or  q o r  bo th  a r e  dead-ends from D .  That  is t h e  s e t  of 

t r a n s i t i o n s  is a  s u b s e t  of t h e  s e t  SxZx(SUD)x(SUD). The s e t s  S  

and D must be d i s j o i n t .  A p o s s i b l e  run  of a  I-automaton wi th  

dead-ends from D on a  I - t r e e  T wi th  dead-ends from D i s  any t r e e  

H t h a t  can  be o b t a i n e d  from T by assignment t o  each i n t e r n a l  

v e r t e x  of D a  s t a t e  i n  such a  way t h a t  t h e  r o o t  i s  marked by 

i n i t i a l  s t a t e  and t h e  ob ta ined  marking is c o n s i s t e n t  w i th  t h e  

s e t  of t r a n s i t i o n s .  That  i s ,  f o r  every  i n t e r n a l  v e r t e x  x of H i f  

a  is a mark of x from 1, s is t h e  a s s igned  mark from S and p  and 

q a r e  r e s p e c t i v e l y  t h e  marks from SUD of t h e  v e r t i c e s  xL and xR 

t h e n  t h e  t u p l e  < s , a , p , q >  belongs t o  t h e  s e t  of t r a n s i t i o n s .  An 

o r d i n a r y  automaton on I - t r e e s  i s  a  p a r t i c u l a r  c a s e  of a  

I-automaton wi th  dead-ends from D ( fo r  any D). A p o s s i b l e  run  i s  

c a l l e d  a c c e p t i n g  i f  t h e  l i m i t  macros ta tes  of a l l  i t s  i n f i n i t e  

p a t h s  a r e  f i n a l .  

Now l e t  us extend t h e  no t ion  of a  r e g u l a r  t r e e  t o  t h e  t r e e s  

wi th  dead-ends.  A t r ansduce r  wi th  input  a lphabe t  { L , R )  and 

ou tpu t  a l p h a b e t  1 u D  g e n e r a t e s  a  I - t r e e  T wi th  dead-ends from D 



i f  a f t e r  r e a d i n g  any word v over I L , R }  i t  o u t p u t s  t h e  mark of 

t h e  v e r t e x  v i n  T .  

We w i l l  prove by induc t ion  t h e  fo l lowing  a s s e r t i o n .  If a 

X-automaton U w t t h  dead-ends from D accepts  some 1 - t r e e  w i t h  

dead-ends from D t h e n  U accepts  some I - t r e e  w i th  dead-ends from 

Dgenera ted  by a transducer w i th  at  most n! s t a t e s .  The 

parameter of induction is t h e  number of s t a t e s  of U (o the r  

parameters can  be a r b i t r a r y ) .  Let  us c a l l  f o r  b r e v i t y  t h e  

automata a c c e p t i n g  nonempty s e t s  t h e  nonempty automata. 

Base of i nduc t ion .  Let U be a nonempty 1-automaton wi th  

dead-ends from D having on ly  one s t a t e .  A s  U a c c e p t s  some 1 - t r e e  

wi th  dead-ends t h e  s e t  of t r a n s i t i o n s  i s n ' t  empty. Let  u s  denote  

t h e  s i n g l e  s t a t e  by s .  Consider two c a s e s .  

1 ) .  There is a t r a n s i t i o n  of t h e  form 

where t,,t2 a r e  dead-ends. 

Then 21 a c c e p t s  t h e  t r e e  wi th  dead-ends 

gene ra t ed  by a t r ansduce r  wi th  one s t a t e .  

2 ) .  There is no t r a n s i t i o n  wi th  two dead-ends on t h e  t o p .  I n  

t h i s  c a s e  every  accepting run has i n f i n i t e  p a t h  t h e r e f o r e  t h e  

macros ta te  { s }  is f i n a l .  There is a t r a n s i t i o n  of one of t h e  

fo l lowing  forms 



where t is a dead-end. Correspondingly V accep t  one of t h e  

f o l l o w i n g  t r e e s  

A l l  t h e s e  t r e e s  a r e  gene ra t ed  by a t r ansduce r  w i th  1 s t a t e .  

Induc t ion  s t e p .  Let  a nonempty 1-automaton U wi th  dead-ends 

from D have nr2 s t a t e s .  We w i l l  r e g a r d  t h e  s t a t e s  a s  t h e  

r e s i d u e s  modulo n. Thus f o r  every  s t a t e  k we can  speak about  t h e  

s t a t e  k+l. Without l o s s  of g e n e r a l i t y  we can assume t h a t  U has 

s i n g l e  i n i t i a l  s t a t e  ( a s  t h e  recognized by U s e t  i s  t h e  union of 

t h e  s e t s  r ecogn ized  by t h e  automata ob ta ined  from U by leaving 

on ly  one i n i t i a l  s t a t e ) .  Let  t h e  i n i t i a l  s t a t e  be 0.  Let  us 

d e f i n e  2n new automata B,,...,$n-,.Qo,...,6n_I, having n-I 

s t a t e s .  

23, is o b t a i n e d  from U by t h e  fo l lowing  t r a n s f o r m a t i o n .  The 

s e t  of s t a t e s  of $, is { O ,  . . . ,  n-l}\(k} and t h e  set of dead-ends 

is D. A l l  t r a n s i t i o n s  i n  which t h e  s t a t e  k occur s  a r e  d e l e t e d  

and a l l  mac ros t a t e s  having k a r e  d e l e t e d .  

6, is o b t a i n e d  from U by t h e  fo l lowing  t r a n s f o r m a t i o n .  The 

i n i t i a l  s t a t e  of 6, is k. The s e t  of s t a t e s  is { O ,  . . . ,  n-l}\{k+l) 

and t h e  s e t  of dead-ends is Du{k+ll. A l l  t h e  t r a n s i t i o n s  having 

(k+l) on t h e  bottom a r e  d e l e t e d  and a l l  t h e  macros t a t e s  having 



(k+l) a r e  d e l e t e d .  

Let  us cons ide r  two c a s e s  

Casg-l, For some k t h e  automaton Bk is nonempty. Let  us 

d e f i n e  a r e g u l a r  1 - t r e e  wi th  dead-ends from D accep ted  by 'll. Let 

U' be t h e  automaton ob ta ined  from If by d e l e t i n g  k from t h e  s e t  

of s t a t e s ,  adding k t o  t h e  s e t  of dead-ends,  d e l e t i n g  a l l  

t r a n s i t i o n s  having k on t h e  bottom and d e l e t i n g  a l l  mac ros t a t e s  

having k. Let us prove t h a t  'll' is nonempty. P i ck  some Z- t r ee  T 

wi th  dead-ends from D accepted  by U. Let us f i x  an  a c c e p t i n g  run  

H of V on T. Let  T' c o n s i s t  of a l l  v e r t i c e s  u of T such t h a t  no 

ances to r  of u is marked by k i n  H (u i t s e l f  can be marked by k). 

Eviden t ly  T' is a 1 - t r e e  wi th  dead-ends from DU{k}. Eviden t ly  i t  

i s  accep ted  by U' .  

By induc t ion  hypothes is  t h e r e  is a 1 - t r e e  T I  wi th  dead-ends 

from Dulk} gene ra t ed  by a t ransducer  wi th  ( I ) !  s t a t e s  and 

accepted  by 9'. Again by ~ n d u c t i o n  hypo thes i s  t h e r e  is a 1 - t r e e  

T, w i th  dead-ends from D accep ted  by Bk and gene ra t ed  by a 

t r ansduce r  w i th  (n- I ) !  s t a t e s .  Let  us " g l u e "  t o  a l l  l eaves  of T I  

marked by k t h e  1 - t r e e  T, and e r a s e  t h e  mark k i n  t h a t  l eaves  

(now a l l  l eaves  t h a t  were marked by k a r e  marked by t h e  r o o t  

mark of T,).  We have ob ta ined  a 1 - t r e e  Tg wi th  dead-ends from D. 

F i r s t l y ,  T3 is accepted  by U: t h e  a c c e p t i n g  r u n  of 'll i s  

obta ined by t h e  same g l u i n g  of an accep t ing  run  of U' on T,  and 

an a c c e p t i n g  run  of Bk on T,. Indeed,  every  i n f i n i t e  pa th  i n  t h e  

ob ta ined  run  e i t h e r  belongs t o  t h e  run  of U' (and hence has 

f i n a l  limit macros t a t e )  or  from some p l a c e  is i n  t h e  run  of B, 

(and hence a l s o  has f i n a l  l i m i t  macros t a t e ) .  

Secondly T3 i s  gene ra t ed  by t h e  t r ansduce r  ob ta ined  by 



g l u i n g  t h e  t r a n s d u c e r s  g e n e r a t i n g  T, and TZ:  i n  t h o s e  s t a t e s  i n  

which t h e  f i r s t  t r a n s d u c e r  o u t p u t s  t h e  dead-end k t h e  new 

t r a n s d u c e r  o u t p u t s  t h e  i n i t i a l  l e t t e r  of t h e  second t r ansduce r  

and s w i t c h  i t  on .  The number of s t a t e s  of t h e  new t r a n s d u c e r  is 

( n - l ) ! + ( n - l ) ! < n !  ( a s  n22).  

Case _Z For a l l  k  t h e  automaton Bk is empty. Le t  us  prove 

t h a t  i n  t h i s  c a s e  t h e  whole macros t a t e  { O , l ,  . . . .  11-11 i s  f i n a l  

and f o r  a l l  k  t h e  automaton Ek is nonempty. By c o n d i t i o n  ?.I 

a c c e p t s  some 1 - t r e e  T wi th  dead-ends from D .  Le t  us  f i x  some 

accepting r u n  H of ?.I on T. Let  us prove t h a t  H has  a n  i n f i n i t e  

p a t h  w i t h  f i n a l  mac ros t a t e  iO.1, . . . ,  n-1 ) .  A s  !Bo is empty t h e r e  

is a  v e r t e x  vo  i n  H marked by 1 .  A s  $, is empty t h e r e  i s  a 

v e r t e x  v l  i n  H t h a t  i s  marked by 2 and fo l lows  v e r t e x  v o  ( t h a t  

is v,=v,u f o r  some word u  over {L,R1).  And s o  on .  We have found 

a n  i n f i n i t e  p a t h  i n  H which pas ses  through a l l  s t a t e s  

O , l ,  . . . ,  n-1 infinitely many t i m e s .  A s  H is a n  a c c e p t i n g  r u n ,  t h e  

m a c r o s t a t e  { O , l .  . . . ,  n-11 i s  f i n a l .  

Let  us  prove  t h a t  f o r  a l l  k  t h e  automaton E k  is nonempty. 

Let  us  t a k e  a r b i t r a r y  k .  Let  us f i x  a g a i n  a  r u n  H of Zf on a  

1 - t r e e  T w l t h  dead-ends from D .  We have a l r e a d y  proved t h a t  some 

v e r t e x  v  of H i s  marked by k .  Consider t h e  1 - t r e e  

H1={ulvu E H ) ,  i n  which t h e  v e r t e x  u  is marked a s  t h e  v e r t e x  vu 

i n  H. Consider  t h e  s u b t r e e  H2 of H ,  c o n s i s t i n g  of a l l  v e r t i c e s  u  

s u c h  t h a t  no t h e i r  a n c e s t o r  is marked by ( k + l ) ( u  i t s e l f  can  be 

marked by k + l ;  i n  t h i s  c a s e  w e  d e l e t e  t h e  1-mark of u ) .  

E v i d e n t l y  we have o b t a i n e d  a n  a c c e p t i n g  run  of Ek on some Z- t ree  

w i th  dead-ends from Du{k+l ) .  

Now l e t  us  c o n s t r u c t  a  r e g u l a r  1 - t r e e  w i th  dead-ends from D 



accepted  by U. By induc t ion  hypothes is  f o r  each k t h e r e  is a  

1 - t r e e  Tk wi th  dead-ends from Du{k+l} accep ted  by 6, and 

genera ted  by a  t r ansduce r  wi th  (n-I)!  s t a t e s .  The 1 - t r e e  T wi th  

dead-ends from D is cons t ruc t ed  a s  fo l lows .  Let  us t a k e  To.  Let  

us " g l u e "  t o  a l l  l eaves  of To marked by 1 t h e  t r e e  T I  (and 

d e l e t e  t h e  mark 1 of t hose  l e a v e s ) .  Let  us " g l u e "  t h e  t r e e  T, t o  

a l l  l eaves  marked by 2 of t h e  ob ta ined  t r e e .  And s o  on .  Let  us 

denote t h e  t r e e  ob ta ined  by r e p e a t i n g  t h i s  procedure  o t imes  by 

T. Obviously T is a  I - t r e e  wi th  dead-ends from D .  We c la im t h a t  

V accep t s  T and T is r e g u l a r .  

Let  u s  prove t h a t  9.l a c c e p t s  T. To t h i s  end l e t  us f i x  f o r  

every k an  a c c e p t i n g  run  H k  of Ek on T k .  Let  us perform wi th  

Ho,. . . , H n - ,  t h e  same " g l u i n g "  a s  w i th  T o . . . . , T , - , .  We'l l  o b t a i n  

a  run H of U on T. Every i n f i n i t e  pa th  i n  H e i t h e r  from some 

place  be longs  t o  some run of ek f o r  some k ( t h e r e f o r e  has f i n a l  

l i m i t  macros t a t e )  o r  pas ses  i n f i n i t e l y  many t imes  through a l l  

s t a t e s  ( t h e r e f o r e  its l i m i t  macros ta te  i s  O , l , . , n - I  which 

i s  f i n a l )  . 

The t r e e  T is r e g u l a r  because i t  can be gene ra t ed  by 

"g lu ing"  t h e  t r a n s d u c e r s  gene ra t ing  To, . . . ,  Tn-, The number of 

i ts s t a t e  is equal  t o  n .  (n-I)! =n! . 

b ) .  Let  u s  now prove t h a t  g iven  a  X-automaton 9.l wi th  

dead-ends from D we can decide  whether i t  is empty and c o n s t r u c t  

t he  t r ansduce r  g e n e r a t i n g  t h e  accepted  t r e e  wi th  dead-ends.  Our 

a lgor i thm is r e c u r s i v e  ( i n  r e c u r s i v e  c a l l s  t h e  number of s t a t e s  

d e c r e a s e s ) .  Let  us be g iven 3. Consider two c a s e s .  

Case 1. U has s i n g l e  s t a t e  s .  I f  t h e  s e t  of t r a n s i t i o n s  is 

empty t h e n  21 a c c e p t s  empty s e t .  Otherwise we look i f  t h e r e  i s  a  



t r a n s i t i o n  with  two dead-ends on t h e  t o p .  I f  t h e r e  is such a 

t r a n s i t i o n  then 21 is nonempty. Otherwise Zf is empty i f  and only 

i f  t h e  macrosta te  { s )  is f i n a l .  Obviously we can c o n s t r u c t  the  

t ransducer  wi th  s i n g l e  s t a t e  generat ing an accepted t r e e  i f  i t  

e x i s t s .  

Case 2 .  U has nz2 s t a t e s .  Making t h e  r e c u r s i v e  c a l l s  we 

check whether t h e r e  is k such t h a t  !Bk i s  nonempty. I f  t h e r e  i s  

such k then 21 is empty i f  and only i f  U' is empty (Zf' is defined 

in  t h e  item a ) ) .  Making the  recurs ive  c a l l  we can decide whether 

U' is empty. 

Otherwise ( i f  f o r  a l l  k .  !Bk is empty) U is nonempty i f  and 

only i f  t h e  macrosta te  { O , l ,  . . . ,  n-1) is f i n a l  and f o r  a l l  k ,  E k  
is nonempty ( t h i s  is i n  f a c t  proved i n  t h e  proof of case  2 of 

item a ) ) .  Making r e c u r s i v e  c a l l s  we can decide whether t h i s  is 

t r u e .  The t ransducer  is constructed a s  i t  was desc r ibed .  

The proof is f i n i s h e d .  

I t  t u r n s  out  t h a t  t h e  bound n! in  theorem 2 cannot be 

improved . 

nmgcr-3, There t s  a constant  c such tha t  f o r  a l l  n t h e r e  

i s  a nonempty s e t  o f  ( 0 ,  l b t r e e s  accepted by an automaton w i th  

c n  s t a t e s  and having no { O .  l b t r e e  generated by a t ransducer  

w i t h  l e s s  t han  n! s t a t e s .  

Proof .  Let us introduce t h e  not ion of an n-ary Z-tree 

(n E M ) .  Recal l  t h a t  b inary 1 - t r e e  is a mapping from t h e  s e t  of 

a l l  words over ( L , R )  i n t o  1. Likewise a n-ary 1 - t r e e  is a 

mapping from t h e  s e t  of a l l  words over t h e  a lphabet  { l ,  . . . .  n )  

i n t o  1. I f  x,,x,,x, , . . .  is a path  in  n-ary 1 - t r e e  and xi=xi-,ai, 

a i  E ( 1 ,  . . . ,  n )  then a i  w i l l  be c a l l e d  t h e  d l r e c t t o n  of t h e  path 



on I - t h  l e v e l .  The notlons of an automaton on Z-trees and of a 

transducer can be naturally generalized to n-ary 1-trees. 

Firstly we will construct for every natural n a nonempty 

set of n-ary {1,2. . . . ,  nj-trees accepted by an automaton with cn 

states and having no tree generated by a transducer- wlth less 

than n! states. Then this set of trees will be transformed into 

the set of binary {O,lj-trees with the same properties. This 

will complete the proof. 

Let us fix n E N and define the set M of n-ary Z-trees 

where Z={1,2, . . . ,  nl. Let T be a n-ary Z-tree. Define in what 

case T belongs to M. Let us take an arbitrary path in T. Let 

a,,a ,,..., ak, . . .  be its directions and p,.p,,p, ,...,pk,... be 

its marks (that is pk is the mark of the vertex a, . . .  ak in T). 

We'll call pk the mark o f  t h e  path on k - t h  l e v e l .  Let N be the 

set of all a E { l ,  . . . ,  nl that occur infinitely many times in the 

sequence al,a3,a 5,...,a2k+,,... Briefly speaking, N is the limit 

set of the directions on odd levels. Let P be the limit set of 

the marks on even levels. Let us call the path c o r r e c t  if the 

maximal element of P is equal to the number of elements of N 

(that is masP=INI).  By definition T belongs to M if all paths in 

T are correct. 

Let us prove that M isn't empty. To this end we define a 

transducer with Zn! states generating a tree in M. Reading the 

sequence al,a * , . . . ,  ak,... of directions the transducer computes 

the so called "sequence of last occurrences of the directions on 

odd levels". Let us define this sequence. This is a permutation 

of the set { i , 2 .  . . . ,  n}. In the beginning it is equal to 

(1.2, . . . ,  n) and after reading the current direction aZk+, on an 



odd l e v e l  t h e  c u r r e n t  permutation n,, is transformed a s  fo l lows;  

a,k+, is moved i n  t h e  beginning of II,, ( t h e  previous  occurrence 

of a,,+, is d e l e t e d ) .  Let us d e f i n e  t h e  output  of the  

t r a n s d u c e r .  On t h e  odd s t e p s  ( i . e .  a f t e r  reading a ,  . . .  a,,+,) it 

ou tpu t s  1 .  Let  us d e f i n e  t h e  output synlbol on an  even s t e p ,  say 

a f t e r  r ead ing  al...aZk+,. Let l z k + l  be t h e  length  of t h e  p r e f i x  

of II,, t h a t  was changed on t h e  s t e p  2k+l ( i . e .  Z Z k + ,  is equal t o  

t h e  number of t h e  occurrence of a,,+, i n  T I a k ) .  The t ransducer  

ou tpu t s  t h i s  l Z k + ,  on t h e  s t e p  2k+2. The i n i t i a l  l e t t e r  of the  

t r ansducer  is 1 .  

Let us prove t h a t  t h e  t r e e  generated by t h e  defined 

t r ansducer  belongs t o  M .  Let  us f i x  an a r b i t r a r y  pa th  i n  t h i s  

t r e e .  Let N be t h e  limit s e t  of t h e  d i r e c t i o n s  on odd l e v e l s  of 

t h i s  p a t h .  Then f o r  a l l  s u f f i c i e n t l y  l a r g e  k  t h e  p r e f i x  of IIk of 

t h e  l eng th  I N 1  is a  permutation of elements of N t h e r e f o r e  the  

number ou tpu t  by t h e  t ransducer  on t h e  k-th l eve l  w i l l  be l e s s  

than  or equal  t o  INI. On t h e  other  hand, a s  every d i r e c t i o n  from 

N occurs  i n f i n i t e l y  many t imes on odd l e v e l s ,  t h e  INI-th element 

of t h e  sequence infinitely many times is moved i n  t h e  beginning 

t h e r e f o r e  t h e  t ransducer  w i l l  i n f i n i t e l y  many t imes ou tpu t  INI. 

Let  us prove t h a t  M is accepted by an automaton wi th  2n 

s t a t e s .  The s t a t e s  of t h i s  automaton a r e  of two types :  t h e  f i r s t  

type  c o n s i s t s  of one s t a t e  f o r  every d i r e c t i o n  and t h e  second 

type c o n s i s t s  of one s t a t e  f o r  every l e t t e r  from 1 ( a l l t o g e t h e r  

2n s t a t e s ) .  On t h e  even l e v e l s  ( 1 . e .  a f t e r  reading al...azk) t he  

s t a t e  of automaton is equal t o  t h e  mark of t h e  c u r r e n t  ve r t ex  

( i - e .  t h e  mark of a ,  . . .  a Z k )  On t h e  odd l e v e l s  ( i . e .  a f t e r  

r ead ing  a,...a,,+,) t h e  s t a t e  of automaton is equal  t o  t h e  l a s t  



d i r e c t i o n  ( 1 . e .  azk+,). The i n i t i a l  s t a t e  i s  a r b i t r a r y  s t a t e  of 

t h e  second t y p e .  The f i n a l  macros ta tes  a r e  those  s t a t e s  i n  which 

t h e  maximum of t h e  s t a t e s  of t h e  second type  is equal  t o  t h e  

number of s t a t e s  of t h e  f i r s t  t ype .  

Let  us prove t h a t  t h e r e  is no t r ansduce r  w i th  l e s s  t han  n! 

s t a t e s  g e n e r a t i n g  a I - t r e e  i n  M .  Assume t h a t  8 is a t r ansduce r  

wi th  l e s s  t h a n  n! s t a t e s  gene ra t ing  a t r e e  i n  M .  

Let  p = ( v , ,  . . . ,  v,) be a permuta t ion  of t h e  set { I ,  . . . ,  n> of 

d i r e c t i o n s .  Consider t h e  word 

U = ( .  . . ( ( v ~ ! v ~ ) ~ ! .  . .Vn),! 
k 

P 
where w deno tes  w w . . .  w ,  k t imes .  We'll c a l l  t h e  word 

t h e  block  of l e v e l  I .  Thus t h e  block of l e v e l  t c o n s i s t s  of n! 

blocks of l e v e l  ( t - I )  and of t h e  l e t t e r  v i  and u c o n s i s t s  of n! 
P 

blocks of l e v e l  n .  Define f o r  any word u t h e  word 5 t o  be t h e  

word ob ta ined  by i n s e r t i n g  1 be fo re  each l e t t e r  of u ( f o r  
- 

example ~ = 1 0 1 1 1 0 ) .  Let  8 work on t h e  input  word Consider 
- 

t h e  s t a t e s  of 8 befo re  r ead ing  t h e  occurrences  of ii i n  u . A s  
P 

t h e  number of occurrences  i s  g r e a t e r  t han  t h e  number of s t a t e s  

t h e r e  a r e  two occurrences  of i,, i n  i and a s t a t e  sn  such t h a t  8 
P 

i s  i n  t h e  s t a t e  sn  be fo re  r ead ing  t h e s e  two occur rences .  Let  us 

c a l l  t h e s e  two occurrences  of Gn i n  5 marked. Let now 8 s t a r t  
P 

i n  t h e  s t a t e  sn  and work on t h e  input  word i n .  Again t h e r e  a r e  

two occur rences  of kn-, i n  Gn and a s t a t e  s n - I  such t h a t  21 is in  

t h e  s t a t e  sn- ,  be fo re  r ead ing  t h e s e  two occur rences .  Let  us c a l l  

t hese  two occur rences  of in-, i n  in marked. Let  us c a l l  t h e  
- 

marked occur rences  of in-, i n  t h e  marked occur rences  of in i n  u 
P - 

a l s o  marked. Thus we have fou r  marked occur rences  of in-, i n  u . 
P 



Repeating t h i s  procedure n times we ge t  a s t a t e  s ,  and zn  marked 
- 

occurrences  of w ,  i n  u such t h a t  i f  $ reads  5 then  before 
P 

- 
P 

read ing  each marked occurrence of w ,  i n  u it is i n  t h e  s t a t e  
P 

s , .  A s  s l  depends on p we ' l l  w r i t e  s l ( p ) .  A s  t h e  number of 

permutations of t h e  s e t  {I, . . . ,  n )  is g r e a t e r  than t h e  number of 

s t a t e s  t h e r e  a r e  two d i f f e r e n t  permutations p and p' such t h a t  

s 1 ( p ) = s , ( p f ) .  Let p = ( v , ,  . . . . v n ) ,  p ' = ( v I r , .  . . , v , ' ) .  Let t s n  i s  

de f ined  by t h e  e q u a l i t i e s  v , = v , '  , . . . ,  v ~ - ~ = v ~ - , ' ,  v i * v i r .  

Let us prove t h a t  t h e  word u has a subword y over 
P 

( v ,  , . . .  v i l  having occurrences of a l l  t h e  l e t t e r s  v , ,  . . . ,  v i  and 

such t h a t  i f  $ works on input word 5 then $ is in  t h e  s t a t e  
P 

s , ( p )  before  and a f t e r  reading 7. Indeed, l e t  us pick a marked 
- 

occurrence of w i + ,  i n  ii . I t  has two marked occurrences of w i  
P 

(we ' l l  c a l l  them l e f t  and r i g h t ) .  Let us pick i n  each of these  
- 

two occurrences  a marked occurrence of G I .  Take t h e  p a r t  of u 
P 

- - 
from t h e  occurrence of ii, in  t h e  l e f t  occurrence of w L  in  u 

P 
( inc lud ing  GI)  up t o  t h e  occurrence of w l  i n  t h e  r i g h t  

occurrence of w i  i n  ii (excluding w l ) .  This p a r t  i s  equal t o  y  
P 

fo r  some word y over v 1 . . , v i .  The word y s a t i s f i e s  the  

requ i red  cond i t ions .  Let us denote the  word obtained from u by P' 
t h e  same procedure by y ' .  

Now l e t  us pick a word x such t h a t  a f t e r  reading x, 8 is in 

t h e  s t a t e  s , ( p ) .  Consider t h r e e  w-words over Z 
- - - - -  
x Y Y Y Y... 
- 
x y 1  y 1  y t  y 1  . . .  
G y  y  y f  y  y l . . .  
Any of t h e s e  t h r e e  w-words de f ines  an i n f i n i t e  path  in  n-ary 

t r e e .  



Eviden t ly  t h e  limit s e t s  of t h e  d i r e c t i o n s  on odd l e v e l s  of 

t h e s e  pa ths  a r e  r e s p e c t i v e l y  equal  t o  

{ V ~ , . . . . V ~ - ~ , V ~ }  

~ V ~ , . . . , V ~ - ~ , V ~ ~ ~  

~ v l . . . . . v i ~ l . v i , v L ' l .  

On t h e  o t h e r  hand l e t  P  and P' a r e  t h e  s e t s  of l e t t e r s  

output  by 8 on even l e v e l s  when it s t a r t s  i n  t h e  s t a t e  s , ( p )  and 

r eads  r e s p e c t i v e l y  and 7 ' .  Then t h e  l i m i t  s e t s  of t h e  l e t t e r s  

output  by 8 on even l e v e l s  on t h e s e  o-words a r e  r e s p e c t i v e l y  

equal  t o  

P 

P' 

PUP' 

Thus w e  have maxP=t, maxPf=t ,  max(PuPf )= t+ l .  C o n t r a d i c t i o n .  

We have c o n s t r u c t e d  t h e  nonempty s e t  M of n-ary  

(1, . . . ,  n } - t r e e s  accep ted  by a  d e t e r m i n i s t i c  automaton wl th  c n  

s t a t e s  and having no t r e e  gene ra t ed  by a  t r ansduce r  w i th  i n !  

s t a t e s .  Let  u s  c o n s t r u c t  t h e  s e t  of b i n a r y  ( 0 , l I - t r e e s  wi th  

t h e s e  p r o p e r t i e s .  C l e a r l y  without l o s s  of g e n e r a l i t y  we may 

assume t h a t  n=zk f o r  some k .  For every  n-ary I I, . . . , n } - t r e e  T 

l e t  us d e f i n e  i ts  " c o u n t e r p a r t "  4 ,  which is a  b i n a r y  ( 0 , l l - t r e e .  

Let us do t h i s  i n  two s t e p s .  On t h e  f l r s t  s t e p  l e t  us d e f i n e  a  

b ina ry  ( I ,  . . . ,  n l - t r e e  T a s  fo l lows .  Each " f o r k "  i n  T t h e  form 

(Tl.T, , . . . ,  T, a r e  t r e e s )  is r ep laced  by t h e  " f o r k "  



The obtained binary t r e e  is f. Then we rep lace  in  'f every 

" f o r k "  of t h e  form 

TI vT2 
(T,,T2 a r e  t r e e s )  with t h e  " fo rk"  

1 

where E1...Ek is t h e  binary code of t h e  l e t t e r  a (under some 

f i x e d  coding of t h e  elements of { l ,  . . . ,  n} with  binary words of 

l eng th  k )  and To is t h e  binary t r e e  marked with only z e r o s .  The 

obtained t r e e  is I'. 

Define R=ITIT E M}. One can e a s i l y  prove t h a t  R is accepted 

by a  d e t e r m i n i s t i c  automaton with cn s t a t e s .  The proof of the 

lower bound n! can be e a s i l y  transformed t o  t h e  proof of the 

same bound f o r  R. 

The theorem is proved. 



-243- 

93. PROOF OF THE RECOGNIZABILITY OF COMPLEMENTATION 

Strategies 

Let ZT be an automaton on 1-trees. Our aim is to construct 

an automaton 2 accepting precisely those trees which are 

rejected by Zf. This will be done in two steps. First, we 

introduce the notion of "rejecting strategy" for a given 

automaton on a given tree. Such a strategy will exist if and 

only if the automaton rejects the tree. In the second step we 

shall construct an automaton 2 having an accepting run if and 

only if there exists a rejecting strategy for ZT. This will be 

the required automaton. 

A rejecting strategy is a strategy for finding a path with 

a non-final limit on any run of the given automaton. We look for 

such a path step by step, starting at the root of the tree and 

proceeding in the following way. Let a run X be given. In the 

first step, we consider the transition at the root and we choose 

one of the two possible directions - left or right. Suppose that 

the left is chosen. In the next step, we consider the transition 

we have in the left vertex of the first level of run X (vertex 

L) and, once again, we choose a direction. Thus, at each step, a 

direction is chosen (by respecting the transition observed in 

this step) and a move to the next vertex in the chosen direction 

is effected. In this way, applying a strategy to run X, we get 

an infinite path in the run. A rejecting strategy applied to any 

run must give a path with a non-final limit. 

Let us describe the notion of a strategy more formally. 



Suppose t h a t  automaton 9.I and input t r e e  T a r e  g iven .  Consider 

a l l  t r a n s i t i o n s  p o s s i b l e  a t  t h e  r o o t  of T, i . e .  a l l  t r a n s i t i o n s  

of t h e  form 

where s is t h e  i n i t i a l  s t a t e  of 9.I and x is t h e  l e t t e r  l a b e l l i n g  

t h e  r o o t  of T .  Let us d iv ide  them i n  some way i n t o  " l e f t  

t r a n s i t i o n s "  and " r i g h t  t r a n s i t i o n s " .  I f  a  run X s t a r t s  wi th  a  

l e f t  ( r i g h t )  t r a n s i t i o n ,  then t h e  s t r a t e g y  w i l l  seek i n  t h i s  run 

a  pa th  wi th  a  non-f inal  limit going i n  t h e  f i r s t  s t e p  t o  the  

l e f t  ( r i g h t ,  r e s p e c t i v e l y ) .  Having made t h i s  d i v i s i o n ,  we have 

de f ined  t h e  s t a t e s  poss tb l y  occurr ing  at  L  durtng t h e  search.  

Let us c a l l  them s t a t e s  poss tb l e  a t  L, or i n  s h o r t  L-poss ib le  

s t a t e s .  I n  o t h e r  words, they  a r e  t h e  s t a t e s  which a r e  t o p  l e f t  

i n  t h e  t r a n s i t i o n s  t h a t  have been chosen a s  l e f t  ones .  W e  

s i m i l a r l y  d e f i n e  R-posst b l e  s t a t e s  or s t a t e s  posst b l e  a t  R. 

(Note t h a t  t h e  s e t s  of L-possible and R-possible s t a t e s  can by 

empty). Furthermore,  we d i v i d e  t h e  t r a n s i t i o n s  of 9.I having a t  

t h e  bottom an L-poss ible  s t a t e  and t h e  l e t t e r  l a b e l l i n g  L  i n  t h e  

input  t r e e  ( t h e  L -poss tb l e  t r a n s t t  t o n s ) ,  i n t o  t h e  l e f t  and r i g h t  

ones .  Th i s  d i v l s i o n  determines how t h e  s t r a t e g y  w i l l  seek a  path  

wi th  a  non-f inal  limit i n  t h e  second s t e p .  Afterwards,  we de f ine  

which s t a t e s  a r e  p o s s i b l e  a t  t h e  v e r t i c e s  LL and LR. S i m i l a r l y ,  

having d iv ided  t h e  R-possible t r a n s i t i o n s  i n t o  l e f t  and r i g h t  

ones ,  we d e f i n e  t h e  s t a t e s  p o s s i b l e  a t  t h e  v e r t i c e s  RL and RR, 

and s o  on.  



To g i v e  a  s t r a t e g y  for  automaton Zi on tnput t r e e  T means t o  

decide  f o r  each v e r t e x  which of t h e  t r a n s i t i o n s  p o s s i b l e  a t  t h i s  

v e r t e x  shou ld  be  cons idered  a s  l e f t  ones and which a s  r i g h t  

ones.  Note t h a t  t h e  s e t  of s t a t e s  p o s s i b l e  a t  a  g iven  v e r t e x  

(and, hence ,  t h e  s e t  of t r a n s i t i o n s  p o s s i b l e  a t  t h i s  v e r t e x )  

depends on t h e  d e c i s i o n  made i n  t h e  preceding s t e p .  

So, l e t  a  s t r a t e g y  f o r  t h e  g iven automaton Zf and input  t r e e  

T be g i v e n .  The s t r a t e g y  s e e k s ,  a s  desc r ibed ,  a  p a t h  i n  each run  

of ?I. The s t r a t e g y  is c a l l e d  r e j e c t i n g  i f  a l l  t h e  p a t h s  i t  

d e f i n e s ,  f o r  a l l  runs  of Zf, have non-f ina l  ( f o r  ZT) limits, and 

moreover, each probable  pa th  of t h e  g iven  s t r a t e g y  has a  

non-f ina l  l i m i t .  By a  probable path of t h e  g iven s t r a t e g y  ( t h e  

automaton and t h e  input  t r e e s  a r e  f i x e d )  we mean a  pa th  which 

can be o b t a i n e d  a s  fo l lows .  F i r s t  of a l l ,  choose one of t h e  

t r a n s i t i o n s  p o s s i b l e  a t  t h e  r o o t .  Then look a t  what t h e  s t r a t e g y  

proposes - t o  cons ide r  t h i s  t r a n s i t i o n  a s  l e f t  o r  a s  r i g h t .  Let  

i t  be l e f t .  Take t h e  s t a t e  which is t o p  l e f t  i n  t h i s  t r a n s i t i o n .  

I t  is one of t h e  L-poss ib le  s t a t e s .  Then, choose a n  L-poss ib l e  

t r a n s i t i o n  s t a r t i n g  in  t h i s  s t a t e .  Again c o n s u l t  t h e  s t r a t e g y .  

Suppose t h i s  t r a n s i t i o n  is r i g h t .  Take t h e  s t a t e  which i s  t o p  

r i g h t  i n  t h i s  t r a n s i t i o n .  This  s t a t e  i s  LR-possible.  And s o  on .  

I f  t h i s  p rocess  does no t  t e rmina te  because of t h e  absence  of 

p o s s i b l e  t r a n s i t i o n s  s t a r t i n g  in  t h e  g iven s t a t e ,  we o b t a i n  a  

pa th  i n  t h e  t r e e  and t h e  s t a t e s  l y l n g  a long  l t .  These p a t h s ,  

ob ta ined  i n  t h i s  way, a r e  c a l l e d  probable  pa ths  of t h e  g iven  

s t r a t e g y .  Every pa th  ob ta ined  by app ly ing  t h e  s t r a t e g y  t o  a  run  

of automaton ZT on t r e e  T i s  probable .  The i n v e r s e  i m p l i c a t i o n  

is, however, no t  g e n e r a l l y  t r u e  because a  probable  p a t h  r e q u i r e s  



a selection of transitions only "ly 

not know whether this selection can 

whole tree. 

,ing along" the path and we do 

be extended to a run on the 

So far, we have Introduced the notion of a strategy (for a 

given automaton on a given input tree) and we have distinguished 

the rejecting ones. The existence of a rejecting strategy for V 

on T is sufficient for 21 to reject T. To make this condition 

necessary, we have to change the notion of strategy by accepting 

the existence of a "memory of finite size" in it. The above 

given notion of strategy - a preliminary one - becomes a 

particular case of the more general notion of strategy that we 

shall present in the next section. 

Modification of the notion of strategy 

- strategy with memory. 

A strategy with memory differs from the previous one when 

it is deciding how to continue to seek a path with a non-final 

limit in a given run. The new strategy considers not only the 

transition at the vertex it is working on but also the history 

of the search reflected in the "inner state". Actually, applying 

the strategy to two different runs, it is possible to reach the 
same vertex in both cases, with the same transitions at this 

vertex. The existence of a "memory" allows it to go, in one case 

to the left, and in the second, to the right. 

The new notion of strategy will be defined as follows. 

Suppose that each state s of If divides into one or more 

different c o p t e s  s,.s, . . .  (more formally, we are given a set C 



of all copies of all states and a surjective mapping 9 of C onto 

S) . 
Let for every pair <s,s'> and every copy c of the state s a 

copy c '  of the state s' be given. c' is called the result of t h e  

application of transitton s - s' t o  t h e  copy c. (More 

precisely, we are given a function y: SxC - C s.t. 

9(y(s1,c))=s' for every S'ES and every c d .  We speak about a 

mapping from SxC rather than about a mapping from SxSxC because 

of s=v(c).) Finally, let one of the copies of the initial state 

be fixed and called the tnitia2 copy. In thls situation we say 

that a strategy set for automaton ZT ts given. We are going to 

define the notion of a rejecting strategy for ?I o n  t r e e  T based 

on t h e  strategy set M. If M contains exactly one copy of each 

state, then the new definition coincides with the old one. 

Previously, the chosen strategy was fixing in each vertex a 

set of possible states, now, instead of this, we shall have a 

set of possible copies. (Note that it may happen that one copy 

of a state will be possible and another copy of the same state 

will not). 

e t 'u " be a transition of ZT and let c be a copy of 

s.a 
c '  C " 

the state s. Consider the scheme -v- , where cf,c" are 

c ,a 
obtained as results of the application of transitions s - sf 
and s ++ S" to c. (Note that c' and c "  are copies of s' and s", 

respectively.) All transitions of this form (obtained by 

applying all transitions of V to all copies c) will be called 

copy-transtttons. The copy-transitions, with a copy possible in 
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some vertex at the bottom are called copy-transttlons posslble 

at this vertex. The strategy divides copy-transitions possible 

at a vertex into the left and the right ones. (Two 

copy-transitions obtained from the same "ordinary" transition 

need not to be of the same direction). This division defines the 

sets of copies possible in the successor vertices: for example, 

the set of copies possible in the vertex xL is the set of all 

copies which occur at the left top of copy-transitions that are 

possible in x and related by the strategy to the left ones. The 

initial vertex has exactly one possible copy - the initial copy 

(of the initial state). The probable paths of the strategy are 

defined as before with the following modification: each path is 

related to a sequence of copies (and not to a sequence of 

states, as previously). However, when defining the notion of a 

rejecting strategy, we shall be interested only in states 

(remaining indifferent to which copy of the glven state occurs). 

That is, a strategy is called rejecting if for each probable 

path the corresponding sequence of states has a non-final limit. 

Now, let a rejecting strategy for V on tree T based on the 

strategy-set M be given, and moreover, let a run on T be given. 

How can we find in this run, using the rejecting strategy, a 

path with a non-final limit? This demands selecting a copy in 

each transition, starting at the bottom and moving upwords. We 

start at the initial copy of the initial state. Then we look at 

the copy-transition which lies in the root. Suppose it to have 

been designated as the left. Hence, we have to move to the left 

into the vertex L. The copy-transition which lies there is a 

possible copy-transition and it was, again, designated as left 



or right. Depending on that, we have to move either to the 

vertex LL or to the vertex LR. And so on. The path we thus get 

will be one of the probable paths and, therefore, its limit will 

be non-final. We have now proved the implication (2) - (1) of 

the following statement. 

Gghfem-4L For every automaton Zf t here  e x l s t s  such a  f tn l  t e  

s t ra tegy- se t  M t ha t  for any t r e e  T t h e  condi t ions  

( 1 )  "V r e j e c t s  T" 

and 

( 2 )  " t h e r e  e x i s t s  a  r e j e c t i n g  s t ra tegy  for  V on T based on 

M" 

are equ tua len t .  

Our first aim is to give the proof of this theorem by 

showing that for a suitable strategy-set M, (1) implies (2). 

Then, the only remaining thing to establish will be that the 

existence of a rejecting strategy for U on T based on M is 

equivalent to the acceptance of the tree T by another automaton. 

Beginning of the Proof of Theorem 4: 

Introduction of Dead-ends in Automata and Strategies 

To prove Theorem 4, we shall have to generalize it by 

introducing dead-ends to automata on trees. Let A be a finite 

set of dead-ends. Instead of I-trees, we shall consider 

IxP(A)-trees and not the X-trees with dead-ends from A as in $2, 

i.e. trees the vertices of which are labelled by both a letter 

from I and a set of dead-ends. The dead-ends of this set will be 

called dead-ends allowed In t h e  given v e r t e x .  The definition of 



automata with dead-ends was given in $ 2 .  

Let us now give the definition of a run of an automaton 

with dead-ends on a ZxP(A)-tree. The run of automaton V on a 

ZxP(A)-tree is a subtree of the complete binary tree, in which 

each vertex has either 0 or 2 successors. The vertices with 0 

successors are labelled by dead-ends, those with 2 successors by 

states. Moreover, each transition occurring here has to be a 

transition of the automaton V. End of the definition of a run. 

A run is called accept tng if, first, all its dead-ends are 

allowed (that is, belong to the P(A)-label of the corresponding 

vertex) and second, the limits of all infinite paths are final 

macro-states. We say that a XxP(A)-tree is accepted by V (the 

automaton with dead-ends) if there is an accepting run; 

otherwise, we say that the tree is rejected by II . Let us now 

explain what is a rejecting strategy for a gtuen automaton on a 

given ZxP(A)-tree based on a given strategy-set M. It seeks, 

starting in the root, either an infinite path with a non-final 

limit or a finite path ending in a non-allowed dead-end. When 

considering the possible copy-transitions, it relates them 

either to the left ones or to the right ones. What is new is the 

fact that in some of these transitions there may be one or two 

dead-ends at the top. (Dead-ends do not have any copies). 

Suppose for example that in a possible copy-transition, there 

is, top left, a dead-end and top right a state (or, more 

exactly, a copy of a state). If this transition is related to 

the right ones, then we get a possible copy at the right 

successor vertex; if it is related to the left ones, we get a 

dead-end in the left successor vertex. In this way we get, in 



each vertex, in addition to the set of possible copies, a set of 

possible dead-ends. For example if a vertex is the left 

successor (of the preceding vertex) then this set is the set of 

all dead ends lying at the left hand side of the top of the copy 

transitions possible at the preceding vertex and related to the 

left ones. Probable paths will be of two kinds now: inflnite 

ones, defined as before, and finite ones ending in a possible 

dead-end. We are ready now to formulate the promised 

generalization of Theorem 4. 

aghrgm-$1. Let automaton 21 i n  alphabet Z and a  s e t  A o f  

dead-ends be g t ven .  Then there  e x t s t s  such a  f t n t t e  s t r a t e g y  s e t  

M t ha t  f o r  any XxP(A)- tree  T ,  t h e  fol lowtng s ta t emen t s  are  

equivalent  : 

( 1 )  "21 r e j e c t s  T" 

( 2 )  " t h e r e  e x t s t s  a  r e j e c t i n g  s t r a t e g y  for V on T based on 

the  s t r a t e g y  s e t  Mu. 

The implication (2) +-+ (1) can be proved as before. 

The implication (1) ++ (2) is going to be proved by induction 

on the number of states of 21 (with an arbitrary number of 

dead-ends) . 

The case of the automaton with one inner state. 

We want to prove Theorem 4' for the automaton with one 

inner state (denoted in the following by 0) and an arbitrary 

number of dead-ends. As a strategy set, for this automaton, we 



can use the set containing the unique copy of the unique state. 

We have to prove that one of the two following possibilities is 

always true: either there is an accepting run or there is a 

rejecting strategy. Let us consider two cases. First case: 

macrostate {O) is not final. In this case, the limit of any 

infinite path is not final and any accepting run must be finite. 

Moreover, the definition of a rejecting strategy requires the 

limits of all probable paths to be non-final and this condition 

is here automatically fulfilled. In this case, we shall 

construct a rejecting strategy assuming that there is no 

accepting run. In the second case, when macrostate { O )  is final, 

the limit of each path is final; and when constructing an 

accepting run, we have only to verify the condition concerning 

dead-ends. In this latest case, we shall construct an accepting 

run assuming that there is no rejecting strategy. 

First case: {O) is not final. 

Let no accepting run exist. This means that no transition used 

at the root can be the beginning of such a run. More precisely, 

the following Lemma is true. 

Lgmg-l, Let t r e e  T w i th  t h e  root  l a b e l l e d  by a d  be 

r e j e c t e d  by automaton 9J. 

( a )  T I  O v O  i s  a  t r a n s i t i o n  o f  automaton 
0. a  

t h e n  t h e  s u b t r e e  w i t h  root  t n  L or t h e  sub t ree  w i th  root  t n  R i s  

r e j e c t e d  by 9J 

( 0 1  ~f O\/' is a transition of automaton 
0.a 



then t h e  dead-end 6 1s not allowed ( I n  u e r t e x  R I  or t h e  sub t ree  

with root t n  L t s  r e j e c t e d  b y  If. 
6 0 

( c )  I f  " 1 s  a  t r a n s t t t o n  of II t hen  t h e  dead-end 6 

0. a 

Is not allowed ( t n  v e r t e x  L I  or the  sub t ree  w i th  root  t n  R Is 

re jec ted  by It. 

i d )  I f  ' v 8 ' t s  a  t r a n s t t t o n  o f  the  automaton then  at l e a s t  
0,a 

one of t h e  two dead-ends t s  not allowed ( t n  t h e  corresponding 

uer t  e x ) .  

Proof .  This  Lemma 1s almost obvious: i f  i ts  s ta tement  were 

not t r u e ,  then it would be poss lb le  t o  cons t ruc t  an accep t ing  

run of If, by "g lu ing"  t h e  descr ibed p a r t s  ( i n  ( a ) ,  e . g . ,  

"gluing" accep t ing  runs on L-subtrees and R-subtrees) .  

We a r e  now ready t o  descr ibe  a  r e j e c t i n g  s t r a t e g y  of If on T 

( r e c a l l :  It r e j e c t s  T, (0 )  is a  non-terminal macros ta te ) .  On the  

f i r s t  s t e p ,  we have t o  d iv ide  a l l  t r a n s i t i o n s  having a t  t h e  

bottom t h e  same l e t t e r  a s  t h e  t r e e  T has a t  i ts  r o o t ,  i n t o  l e f t  

and r i g h t  ones .  This w i l l  be done a s  fol lows:  t h e  t r a n s i t i o n  is 

considered a s  a  l e f t  one i f  i t  has top  l e f t  e i t h e r  a  non-allowed 

dead-end or  t h e  macrostate (01 and, in  t h i s  l a t e s t  c a s e ,  t h e  

L-subtree is r e j e c t e d  by If. If  ne i the r  of those  cond i t ions  is 

s a t i s f i e d ,  then t h e  t r a n s i t i o n  is considered a s  a  r i g h t  one. 

Following Lemma 1 ,  i t  then has top  r i g h t  e i t h e r  a  non-allowed 

dead-end or  t h e  s t a t e  (0)  and, in  the  l a t t e r  c a s e ,  t h e  R-subtree 

i s  r e j e c t e d  by If. The previous cons ide ra t ions  y i e l d  t h a t  a l l  

dead-ends p o s s i b l e  a t  L and R a r e  not allowed; and, moreover, i t  



is c l e a r  t h a t  i f  t h e  s t a t e  0 i s  poss ib le  a t  one of t h e  v e r t i c e s  

L and R ,  t hen  t h e  s u b t r e e  wi th  t h e  r o o t  a t  t h i s  v e r t e x  w i l l  be 

r e j e c t e d  by 21. This  g ives  us t h e  oppor tun i ty  t o  d i v i d e  s i m i l a r l y  

a l l  transitions p o s s i b l e  a t  L and R i n t o  l e f t  and r i g h t  ones.  

Continuing t h u s ,  we f i n a l l y  g e t  a  r e j e c t i n g  s t r a t e g y :  the  

c o n d i t i o n  f o r  dead-ends is s a t i s f i e d  and, a s  mentioned be fo re ,  

t h e r e  is no need t o  v e r i f y  t h e  cond i t ion  f o r  i n f i n i t e  p a t h s .  The 

f i r s t  c a s e  1s complete.  

Second _cgsei (0) is f i n a l .  

We s h a l l  now proceed i n  t h e  opposi te  d i r e c t i o n :  supposing t h a t  

t h e r e  is no r e j e c t i n g  s t r a t e g y ,  we s h a l l  c o n s t r u c t  an accept ing 

run .  So, l e t  no r e j e c t i n g  s t r a t e g y  f o r  21 on t h e  t r e e  T e x i s t .  

Th i s  means t h a t  i n  t h e  f i r s t  s t e p ,  i t  was not p o s s i b l e  t o  a s s ign  

c e r t a i n  t r a n s i t i o n s  e i t h e r  t o  t h e  r i g h t  or t o  t h e  l e f t  i n  such a  

way t h a t  we could  cont inue with t h e  c o n s t r u c t i o n  of the  

s t r a t e g y .  To put i t  more p r e c i s e l y ,  we a r r i v e  a t  t h e  fol lowing.  

Lemma-zL Let us suppose tha t  t h e r e  t s  no r e j e c t t n g  s t r a t e g y  

for automaton 21 on t h e  t r e e  T ,  t h e  root  of whtch I s  l abe led  by 

l e t t e r  a. Then t h e r e  e x t s t s  a  t r a n s t t t o n  o f  21 f o r  whtch one o f  

t h e  fo l lowing s ta t emen t s  ho lds :  

( a )  t h e  t r a n s t t t o n  t s  o f  t h e  form O / / O a n d  t h e r e  t s  no 
O,a 

r e j e c t t n g  s t r a t e g y  fo r  21 on t h e  L-subtree and on t h e  R-subtree;  

( b )  t h e  t r a n s t t i o n  i s  o f  t h e  form 'vO, t h e r e  t s  no 

r e j e c t t n g  s t r a t e g y  on t h e  R-subtree and 6 t s  an allowed ( t n  L) 

dead-end; 



0 
I c )  t he  t r a n s i t t o n  t s  o f  t h e  form , t h e r e  i s  no 

r e j e c t t n g  s t r a t e g y  for 9.l on t h e  L-subtree and 6 Is  an allowed 

( L n  RI dead-end; 
6 

(dl t h e  t r a n s t t l o n  Is  o f  t h e  form v" , where 6 and 6 '  are  
0, a 

allowed t n  L and R dead-ends re spec t  t v e l y .  

Proof.  The Lemma is almost obvious: if such transitions did 

not exist then we would be able to designate each transition (at 

the root) as a left one or as a right one and, going on in the 

same way, to obtain a rejecting strategy. (For example, either 

the L-subtree or the R-subtree would have a rejecting strategy 

for any transition of the form ; depending on the 

subtree, we would simply follow the (existing) rejecting 

strategy on this subtree) 

We shall now construct an accepting run (of automaton U 

with final macrostate {O} which does not have any rejecting 

strategy on the tree T). Take the transition guaranteed by 

Lemma 2 and put it in the root of the run. Suppose for example 

that it is of the form V0 O,a 

Then 6 is an allowed dead-end and the R-subtree does not have 

any rejecting strategy. If we apply Lemma 2 to the R-subtree we 

obtain the next transition, and so on. The resulting run will be 

accepting: the condition for dead-ends is satisfied and the 

condition for paths is obvious because of {O) being final. 



The case  of one-s ta te  automaton is proved. 

Induct ion s t ep  

( d e s c r i p t i o n  of t h e  s t r a t e g y  s e t  and two lemmas) 

So, we a r e  now t o  prove Theorem 4 '  fo r  automaton ?I with n+l  

s t a t e s ,  assuming i t  t o  be t r u e  f o r  any automaton with  n s t a t e s  

(and an a r b i t r a r y  number of dead-ends) . Let us denote t h e  s t a t e s  

of TI by 0 , l  . . . ,  n  and consider them a s  t h e  elements of N/(n+l) in 

order  t o  speak convenient ly  about s t a t e  ( i + l )  a s  fol lowing s t a t e  

i .  0 is considered a s  t h e  i n i t i a l  s t a t e .  

For t h e  purposes of proof ,  we s h a l l  in t roduce some 

a u x i l i a r y  automata.  TIi w i l l  denote t h e  automaton t h a t  has the 

same t a b l e  of t r a n s i t i o n s  and t h e  same s e t  of f i n a l  macrostates 

a s  Z1, but t h e  i n i t i a l  s t a t e  of V i  i s  i .  B i  w i l l  denote the  

automaton der ived  from TI by consider ing s t a t e  i a s  t h e  i n i t i a l  

s t a t e  and i + 1  a s  a  dead-end. This means t h a t  t h e  number of 

s t a t e s  decreases  by one (because of t h e  exclusion of 1 )  and 

t h e  number of dead-ends increases  by one (because of the  

a d d i t i o n  of i + 1 ) .  Fur the r ,  a l l  t r a n s i t i o n s  having i + 1  a t  the  

bottom a r e  excluded, and a l l  f i n a l  macrostates con ta in ing  i + 1  

a r e  excluded, while t h e  t r a n s i t i o n s  having i + i  on t h e  top  a r e  

kept (but i + 1  is considered a s  a  dead-end and not a s  a  s t a t e ) .  

Automata B i  have n  s t a t e s  (TI has n+ l  s t a t e s ) .  By t h e  induction 

assumption, f o r  any i = O .  . . . ,  n-1, t h e r e  e x i s t s  a  s t r a t e g y  s e t  M i  
which s a t i s f i e s  t h e  following cond i t ion :  t r e e  T is r e j e c t e d  by 

automaton B i  i f  and only i f  t h e r e  e x i s t s  a  r e j e c t i n g  s t r a t e g y  

f o r  B i  on T  based on M L .  This s t r a t e g y  s e t  con ta ins  a  c e r t a i n  



number of copies  of each s t a t e  of Bi, hence, t h e  copies  of a l l  

s t a t e s  of ZT except f o r  i+1. Assume t h a t  s e t s  M i  a r e  pairwise  

d i s j o i n t .  We s h a l l  now desc r ibe  t h e  s t r a t e g y  s e t  M fo r  V. I t  

contains a l l  t h e  copies  contained in  t h e  s e t s  M i .  ( I n  t h i s  way, 

a  copy of i belongs t o  M i f  and only i f  i t  belongs t o  one of t h e  

s e t s  M k .  Note t h a t  M k  does not contain  any copy of t h e  s t a t e  

k + l ) .  Let us desc r ibe  what is t h e  r e s u l t  of t h e  a c t i o n  of t h e  

t r a n s i t i o n  i ++ j on copy c of s t a t e  1. Let CGM . I f  t h e  
0 

r e s u l t  of t h e  a c t i o n  of t h e  t r a n s i t i o n  i - j on c is def ined 

in M ( i . e .  i f  jzko+l; izko+l is always t r u e  because c belongs 
0 

t o  M k  ) ,  then i t  w i l l  be considered a s  t h e  r e s u l t  of t h e  a c t i o n  
0 

of i ++ j on c i n  M .  Otherwise ( i . e .  when j=ko+l), t h e  r e s u l t  

i s  def ined a s  t h e  i n i t i a l  copy of s t a t e  j in  s e t  M J .  To f i n i s h  

the d e s c r i p t i o n  of s e t  M ,  it remains t o  designate  its i n i t i a l  

copy. I t  w i l l  be t h e  i n i t i a l  copy of s t a t e  0 in  Mo. 

The above constructed s e t  M i s  the  requ i red  s e t :  automaton 

ll r e j e c t s  T i f  and only i f  t h e r e  e x i s t s  a  rejecting s t r a t e g y  f o r  

V based on M. To prove t h i s ,  we s h a l l  need t h e  fol lowing two 

lemmas. 

Lm~ma-3~ Automaton Z T i  a ccep t s  t r e e  T i f  and o n l y  i f  

automaton Bi accep t s  t r e e  T', whtch i s  ob ta tned  b y  t a k l n g  T and 

adding t h e  dead-end i+1 i n t o  t h e  v e r t i c e s  whlch a re  r o o t s  o f  

sub t ree s  accepted  by ?Ii+,. 

Before formulat ing the  second lemma, l e t  us in t roduce a  

nota t ion:  M '  IS t h e  s t r a t e g y  s e t  which d i f f e r s  from M i n  a  



unique point - the initial copy is the initial copy of state i 

in Mi. 

Lemma-$, There e x t s t s  a  r e j e c t t n g  s t r a t e g y  based on M~ for 

automaton Ui on t r e e  T t f  and only  t f  t h e r e  e x t s t s  a  r e j e c t t n g  

s t r a t e g y  (based  on Mi) for automaton EL on t r e e  T " ,  whtch t s  

obta ined by t a k i n g  T and adding t h e  dead-end i t 1  t o  t h e  v e r t l c e s  

whtch are  r o o t s  of sub t rees  on whtch t h e r e  t s  no r e j e c t t n g  

s t r a t e g y  f o r  Ui+, based on M"'. 

Proof of Lemma 3.  This lemma has nothing to do with 

strategies, and therefore it is simple. If Ui accepts T, then, 

cutting the accepting run at the point, where it goes through 

state i + l ,  we get an accepting run of automaton !Bi on T': the 

cut parts guarantee that the dead-ends i + l  are allowed. 

On the other hand, if Bi has an accepting run on T', then, 

"gluing" at the dead-ends i + 1 ,  which occur in this run, the 

accepting runs of automaton Ui+, (they exist because the 

dead-ends i + l  are allowed), we get a run of Uion T. 

Proof o f  Lemma 4 .  This lemma is more complicated because of 

its connection with strategies. To clarify its formulation and 

understand its analogy with Lemma 3, let us introduce the 

following terminology. Let us say that an automaton 

quas t -accep t s  a tree, if there is no rejecting strategy for this 

automaton on this tree (strategy based on the corresponding set 

described in the lemma). Then Lemma 4 can be reformulated as 

follows: 



Automaton Z f i  quas i -accepts  t r e e  T t  f and only  I f  automaton B i  

,quasi-accepts t r e e  T", which t s  obtained by t a k t n g  T and 

i n s e r t i n g  t h e  dead-end i t 1  i n t o  t h e  v e r t i c e s  which are  r o o t s  o f  

subtrees  quasi -accepted  by U i + ,  . 

Hence, suppose t h a t  t h e r e  e x i s t s  a  r e j e c t i n g  s t r a t e g y  on 

t r e e  T" based on M i  f o r  automaton B , .  A l l  we need i s  t o  

cons t ruc t  a  r e j e c t i n g  s t r a t e g y  based on M' f o r  ?I i  on T .  A s  f i r s t  

s t e p ,  we have t o  d i v i d e  i n t o  l e f t  and r i g h t  t h e  same 

copy- t r ans i t i ons  a s  i n  t h e  s t r a t e g y  f o r  B i  ( h e r e ,  t h e  d e f i n i t i o n  

of a c t i o n  of a  t r a n s i t i o n  on a  copy i n  M i  is u s e d ) .  I n  t h e  

fo l lowing s t e p  w e  s e l e c t  t h e  same cop ies  a s  i n  t h e  s t r a t e g y  f o r  

S i  except  f o r  one c a s e :  i t  is p o s s i b l e  t h a t  t h e  dead-end i + l  has 

been s e l e c t e d  f o r  t h e  s t r a t e g y  f o r  B i ,  we then  s e l e c t  ( t h e  

i n i t i a l  copy i n  M i + ,  o f )  s t a t e  i + l .  But a s  t h e  dead-end has  been 

s e l e c t e d ,  t h i s  means t h a t  i t  is not  a l lowed,  i n  o t h e r  words, 

t h e r e  is a  r e j e c t i n g  s t r a t e g y  f o r  W L I 1  based on M i + ,  on t h e  

s u b t r e e ,  t h e  r o o t  of which i s  i n  t h e  v e r t e x  l a b e l l e d  by t h i s  

dead-end. Thus t h i s  s t r a t e g y  d i v i d e s  t h e  c o p y - t r a n s i t i o n s  having 

a t  t h e  bottom t h e  i n i t i a l  copy of i + l .  The re fo re ,  we can  go on 

with t h e  c o n s t r u c t i o n  of t h e  s t r a t e g y  f o r  U :  t h e  

copy- t r ans i t i ons  a t  t h e  bottom of which t h e r e  is a  copy of a  

s t a t e  d i f f e r e n t  from i + 1 ,  w i l l  be d iv ided  i n t o  l e f t  and r i g h t  

copies  a s  i n  t h e  s t r a t e g y  f o r  B i ,  and t h e  c o p y - t r a n s i t i o n s ,  a t  

t he  bottom of which t h e r e  is t h e  i n i t i a l  copy of i + 1 ,  w i l l  be 

d iv ided by fo l lowing  t h e  e x i s t i n g  s t r a t e g i e s  f o r  Z f i + , .  I n  t h e  

fo l lowing s t e p s ,  we can proceed i n  a  s i m i l a r  way and g e t  a  

s t r a t e g y  f o r  Z f i  . 



However, in the previous analysis, there is an important 

point we have not discussed. Indeed, the selected copies could 

have been selected for different reasons: following a 

Bi-strategy and at the same time following an ?Ii+,-strategy, or 

even several ?Ii+,-strategies! The picture represents one of 

these situations: circles contain selected copies, full lines 

represent transitions due to Bi-strategy, dotted lines represent 

transitions due to ?Ii+,-strategy. In the left top circle, we see 

a copy A which has been selected for three reasons. One 

selection has been done according to Bi-strategy, the second 

according to Vi+, starting at C, and the third according to 

Vi+,-strategy starting at E. Copy B has been selected for two 

reasons: one selection has been made following Bi-strategy and 

another following Vi+,-strategy starting at E. What should be 

done in such cases? Which strategy should we follow? Answer: if 

possible, follow ?Ii+,-strategies and, among them, the strategy 

coming into effect as early as possible. This leads to the goal, 

namely, the rejecting strategy for ?Ii. Indeed, the condition for 

dead-ends is satisfied. Let us verify the condition for paths. 

Take an arbitrary one. Either it is out of range of 



U i + , - s t r a t e g y  ( then  t h e  limit is not  f i n a l  s i n c e  B i - s t r a t e g y  is 

r e j e c t i n g ) ,  o r ,  i f  n o t ,  i t  never leaves  t h i s  range  (because  we 

p re fe r  V i + , - s t r a t e g i e s ) .  I t  may only  happen t h a t  i t  comes i n t o  

the  range  of a n o t h e r ,  e a r l i e r  I f i + , - s t r a t e g y .  But t h i s  is 

poss ib l e  on ly  a  f i n i t e  number of t imes .  Hence, beginning a t  a  

c e r t a i n  p o i n t ,  t h e  pa th  l i e s  e n t i r e l y  i n  t h e  range  of one 

? I i+ , - s t r a t egy  and its l i m i t  is not  f i n a l .  

We have proved one impl i ca t ion  of Lemma 4 .  The o p p o s i t e  

imp l i ca t ion  is much s i m p l e r .  Let  us have a  r e j e c t i n g  s t r a t e g y  

for  U i  on T .  Consider t hose  s e l e c t e d  cop ie s  of s t a t e  i + l ,  which 

have been s e l e c t e d  a s  t h e  f i r s t  ones ( t h i s  means t h a t  on t h e  

paths t h e y  l i e  on t h e r e  a r e  no o the r  cop ie s  of i + l  b e f o r e  them).  

These cop ie s  a r e  i n i t i a l  i n  M i + ,  (by t h e  r u l e s  of a p p l i c a t i o n  of 

t r a n s i t i o n s  t o  t h e  cop ie s  i n  M). The re fo re ,  s u b t r e e s  wi th  r o o t s  

in t h e  v e r t i c e s  l a b e l l e d  by t h e s e  cop ie s  have a  r e j e c t i n g  

s t r a t e g y  f o r  Z f i + ,  (based on M ~ ) .  Hence, by c o n s i d e r i n g  t h e s e  

copies a s  dead-ends, we g e t  a  r e j e c t i n g  s t r a t e g y  f o r  B L  on T" 

based on M i .  

The p roof s  of Lemma 3 and 4 a r e  complete.  I n  t h e  fo l lowing  

s e c t i o n ,  we s h a l l  u se  i n  f a c t  only  t h a t  p a r t  of Lemma 3 which 

has been proved a s  second and t h a t  p a r t  of Lemma 4 which has  

been proved a s  f i r s t .  The converse  imp l i ca t ions  were inc luded 

j u s t  t o  make t h e  s t a t e m e n t s  complete.  

L a s t  p a r t  of t h e  induc t ion  s t e p  

What is t h e  outcome of t h e  Lemmas proved i n  t h e  p rev ious  

paragraph? Knowing t h a t  t r e e  T' of Lemma 3 c o i n c i d e s  wi th  t r e e  

T" of Lemma 4 ,  we can use  t h e  induc t ion  assumption f o r  automaton 



!Bi and g e t  what we need - t h e  ex i s tence  of an accep t ing  run of 

V i  on T would be equivalent  t o  the  f a c t  t h a t  t h e r e  is no 

r e j e c t i n g  s t r a t e g y  f o r  I f i  on T. However, t h e  a s s e r t i o n  Tr=T" 

s t a t e s  t h a t  t h e  ex i s tence  of an accept ing run f o r  I f i + ,  i s  

equ iva len t  t o  t h e  f a c t  t h e r e  being no r e j e c t i n g  s t r a t e g y  for 

V , + ,  which has t h e  same number of s t a t e s  a s  V,! Never theless ,  

t h e  proved Lemmas a r e  of some value.  

We s h a l l  consider  two cases :  in  t h e  f i r s t ,  we s h a l l  assume 

t h a t  t h e  s e t  S of a l l  s t a t e s  i s  f i n a l ,  i n  t h e  second, t h a t  i t  i s  

n o t .  I n  t h e  f i r s t  c a s e ,  we s h a l l  apply Lemma 4 and use t h e  same 

ideas  a s  when proving Lemma 3. In  t h e  second, Lemma 3 and ideas 

of t h e  proof of Lemma 4 w i l l  be used. 

F i r s t  c a s e .  The s e t  of a l l  s t a t e s  is f i n a l .  Let us prove 

t h a t  i f  t h e r e  is no r e j e c t i n g  s t r a t e g y  on T  f o r  Ifo,  t hen  the re  

is an accep t ing  run f o r  If,. A s  t h e r e  is no r e j e c t i n g  s t r a t e g y  on 

T  f o r  Y o ,  t h e r e  is an accept ing run on T" (cons t ruc ted  in 

Lemma 4) f o r  8, (remember t h a t  f o r  8,, by induction assumption, 

t h e  e x i s t e n c e  of a  run i s  equivalent  t o  t h e  non-existence of a 

s t r a t e g y ) .  For what reason is t h i s  not a  run f o r  If,? I n  some 

p l a c e s ,  i t  comes t o  dead-ends 1 allowed i n  T " .  Subtrees  with 

r o o t s  i n  t h e s e  v e r t i c e s  do not have any r e j e c t i n g  s t r a t e g y  for  

U,, hence, even without having an accept ing run f o r  q, (which 

would permit us t o  use d i r e c t l y  Lemma 3) ,  they have a t  l e a s t  a 

run f o r  !B,, which w i l l  be accept ing i f  we add a t  c e r t a i n  places 

dead-and 2 .  But i n  those  places  i t  is poss ib le  t o  s t a r t  t h e  run 

of 8, and s o  on. We g e t  a  run f o r  If, by "gluing" a l l  t h e s e  runs 

t o g e t h e r .  I t  w i l l  be accept ing:  any path  e i t h e r  l i e s  i n  a  run of 

some of t h e  8i's7 (from a  c e r t a i n  point)  - (and has t h e r e f o r e  a 



f i n a l  l i m i t )  - or  it descr ibes  a  c i r c l e ,  going i n f i n i t e l y  many 

times from $, t o  $,, from 13, t o  8, , . . . ,  from $n t o  g o ,  its l i m i t  

being equal t o  t h e  s e t  of a l l  s t a t e s ,  which is f i n a l  by 

assumption. So much f o r  t h e  f i r s t  case .  

Second c a s e .  The s e t  of a l l  s t a t e s  is not f i n a l .  Thls case  

is more complicated; a t  t h i s  point  we s h a l l  use t h e  s t r u c t u r e  of 

the s t r a t e g y  s e t  M we have constructed.  Let us prove, supposing 

tha t  t h e r e  is no accept ing run,  the  existence of a r e j e c t i n g  

s t r a t e g y .  Hence, l e t  us suppose t h e r e  is no accep t ing  run on 

t r e e  T f o r  automaton Yo. By Lemma 3, a s  t h e r e  i s  no accep t ing  

run f,or So on T ' ,  which was obtained from T by addlng i n  some 

ver t i ces  dead-end 1 t h e r e  is a  r e j e c t i n g  s t r a t e g y  fo r  S o .  What 

does i t  lack in  order t o  be an Yo-strategy? I t  con ta ins  a t  

several  p laces  poss ib le  dead-ends 1 . When cons t ruc t ing  

Yo-strategy, a t  t h e  same places t h e r e  appear p o s s i b l e  cop les  of 

s t a t e  1 ( m i t i a l  copies  in  M,). What should be done with them7 

The sub t rees  with roo t  i n  t h e  v e r t i c e s  l a b e l l e d  by these  copies  

do not have any accept ing run fo r  Y, .  We do not know whether 

there  is a  r e j e c t i n g  s t r a t e g y  on these  s u b t r e e s ,  (which would 

allow us t o  use  Lemma 4 ) .  A s  t h e r e  is no accept ing run ,  we can 

once more apply Lemma 3 and s t a t e  t h a t  by adding dead-end 2 .  we 

get t r e e s  without accept ing runs f o r  $, on i t  and hence (by t h e  

induction assumption) with a  r e j e c t i n g  s t r a t e g y  fo r  S , .  Using 

these r e j e c t i n g  s t r a t e g i e s ,  it is poss ib le  t o  go on with  t h e  

construct ion of Yo-strategy. Note t h a t ,  u n t i l  now, we have not 

met any problemat ical  case  (s imilar  t o  those  which were 

discussed i n  t h e  proof of Lemma 4 ) ,  because t h e  $,-strategy 

deals  with copies  from Mo and $ , - s t ra tegy  d e a l s  with copies  from 



M,. Going on wi th  t h i s  procedure,  we put s t r a t e g i e s  for 

B,, . . . ,  3, i n t o  a c t i o n .  The s t r a t e g y  f o r  Bk+, comes i n t o  ac t ion  

a t  t h e  p laces  i n  which t h e  s t r a t e g y  f o r  8, has poss ib le  

dead-ends k + l :  i n  t h e s e  p l a c e s ,  t h e r e  is no accep t ing  run for 

'U,+,. A t  a  c e r t a i n  moment, t h e  c i r c l e  i s  completed and i t  i s  

necessa ry  t o  use  t h e  Bo-s t ra t egy ,  and s o  on. Now, t h e  quest ion 

can a r i s e  about t h e  choice  between t h e  d i f f e r e n t  s t r a t e g i e s  for 

B i .  The answer is - t h e  one which is put i n t o  a c t i o n  e a r l i e r .  We 

s h a l l  v e r i f y  whether we indeed g e t  a  r e j e c t i n g  s t r a t e g y  f o r  Vo. 

The condition with  dead-ends is obviously s a t i s f i e d .  Let us 

v e r i f y  t h e  cond i t ion  f o r  pa ths .  Every probable path  is of one of 

t h e  two fo l lowing  k inds :  e i t h e r  t h e  p a t h ,  s t a r t i n g  from a  

c e r t a l n  p o i n t ,  goes through t h e  copies  of only  one s t r a t e g y  s e t  

M , ,  o r  goes i n f i n i t e l y  many t imes from t h e  s t r a t e g y  s e t s  M j  t o  

t h e  fo l lowing  ones.  M J + , .  In  t h e  f i r s t  c a s e ,  t h e  p a t h ,  beginning 

a t  a  c e r t a i n  p l a c e ,  fo l lows t h e  s t r a t e g y  f o r  B i ;  t o  swi tch  from 

one s t r a t e g y  t o  another is poss ib le  only  i f  t h e  second one 

s t a r t e d  e a r l i e r .  Therefore ,  such swi tches  a r e  p o s s i b l e  only 

f i n i t e l y  many t imes and t h e  path  almost everywhere coincides  

wi th  t h e  probable  pa th  of t h e  s t r a t e g y  f o r  Bi and its limit i s  

not f i n a l .  I n  t h e  second c a s e ,  t h e  path  pass ing from M J  t o  M J + , ,  

goes through t h e  i n i t i a l  copy of M J  and t h e r e f o r e  i t s  l imi t  i s  

t h e  s e t  of a l l  s t a t e s ,  which is (by assumption) not f i n a l .  

So,  t h e  case  when t h e  s e t  of a l l  s t a t e s  is not f i n a l ,  i s  

f i n i s h e d  and t h e  induc t ive  proof of Theorem 4 '  is hence 

completed.  Thus we have proved t h e  above formulated Theorem 4 .  



Final stage of the proof of the complementation theorem 

Corresponding to the announced plan, it remains to prove 

the following statement. 

Theorem-3, Let Z be an a lphabet ,  Y an automaton on I - t r e e s  

(wl thout  any dead-end!) ,  M a  s t r a t e g y  s e t .  Then t h e  s e t  o f  a l l  

I - t r e e s  on which t h e r e  e x i s t s  r e j e c t t n g  s t r a t e g y  for 9J based on 

M i s  r ecogn i zab le .  

To prove this statement, introduce the notion of a 

semiautomaton on I-trees. A semiautomaton is given by a set of 

inner states S, a table of transitions, a set of initial states 

(until now, everything listed has been the same as in the case 

of the usual automata on X-trees) and moreover, a certain 

automaton .% on o-words in the alphabet S. A run is defined in 

the same manner as in the case of usual automata. It is called 

accepting if all paths, regarded as sequences of states (1.e'. 

elements of S) are rejected by 8 .  The sets of trees accepted by 

semiautomata will be called (temporary) semtrecognlzable .  I t  t s  

clear t h a t  any recognizable  s e t  i s  semtrecognizable .  The 

following Lemma states that the converse implication is also 

true. 

Lemma-?, Any semtrecogntzable s e t  i s  r ecogn t zab le .  

Proof .  It is known (see [41) that every (nondeterministic) 

automaton on o-words is equivalent to some deterministic one. 

Hence, the automaton B, belonging to the given semiautomaton Y, 

can be considered as deterministic. Then, it is not difficult to 

construct an automaton which will be equivalent to the 

semiautomaton 9.I. Its set of states has to be the product of the 



sets of states of Zf and $; its run is in fact constructed from a 

run of ZT and the runs of B on a-words (letters are the states of 

Zf) which lie in the chosen run of along all paths. 

Now it remains to prove that the set of all trees, on which 

there exists a rejecting strategy for Zf based on M is 

semirecogni;zable. But this is quite clear: it is not difficult 

to formulate the notion of strategy itself in the form of an 

accepting run of a semiautomaton. The different possibilities of 

dividing colpy-transitions to left and right ones correspond to 

the possibilities of continuing the run in different ways. It is 

possible to consider the states of the semiautomaton as pairs of 

disjoint sets of copy transitions (the members of the pair 

correspond to the sets of left and right copy-transitions). 

Automaton 8 will look for the paths which do not satisfy the 

definition of a strategy (i.e. the paths with final limits) and 

hence, the acceptance by automaton $3 of the sequences of states 

lying along all paths will indeed mean that the strategy is 

rejecting. 

In this way, we have proved Theorem 4 and hence we have 

proved that the complement of a recognizable set is 

recognizable. 
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