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A central problem of mathematical logic and the theory of
algorithms 1s the problem of the decidability of logical
theories, that is the problem of constructing an algorithm which
distinguishes which formulae of a given language belong to the
theory (are true in a given semantics, provable in a given
deductive system etc.).

The study of decision problems has shown that a large
number of naturally arising theories are undecidable, the
desired algorithm does not exist. At the same time, from the
point of view of applications, either inside or outside
mathematics, the most important cases are exactly those for
which such an algorithm can be constructed.

One of the basic results concerning the decidability of
logical theories is the Theorem of the decidability of the
monadic second order theory of several successors. This Theoren,

proven by M.0.Rabin 1n 1969 [1], yields as simple corollaries
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many of the results on decidability known to that time. Since
then, it has been used many times 1n applications, namely in
proving the decidability of non-classical logics, such as the
logic of programs.

However, in his lecture at the International Congress of

Mathematics held in Nice in 1970, M.0.Rabin formulated the
problem of simplifying his proof. The first problem of his
lecture [21 is:
“1. Find a simpler proof for Theorem 2(ii), possibly avoiding
the transfinite induction used in [21." (Theorem 2(ii) is the
key statement of Rabin’s proof, [2]1 1is paper {11 of our
references). Indeed, Rabin’s proof, beyond the technical
complications, has a more fundamental inconvenience. In order to
obtain a perfectly constructive result, it uses a very strong
instrument - the principle of transfinite induction.

In 1978, the author of this paper gave a new and simpler
proof of Rabin Theorem without using transfinite induction. This
proof was presented 1n the course on decidable theories given in
1978/79 at the Faculty of Mechanics and Mathematics of Moscow
State University by A.L.Semenov and 1t was the subject of the
author“s graduation paper. The present version differs only 1n
small details from the version given there.

Another proof, close to ours, was presented in May, 1982 at
the Symposium on the Theory of Computing [3]. Some time ago,
D.Muller and P.Schupp proposed the wuse of alternating finite

automata to prove the Rabin Theorem.
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§1. THE MONADIC THEORY OF TWO SUCCESSORS AND FINITE AUTOMATA ON
TREES.

Let us give the definition of the monadic theory of two
successors, denoted by 52S, which 1s formed by all formulae of a
certain language true in a certain interpretation. The language
contains both 1individual and set (= monadic predicate)
variables; its atomic formulae are of the form x € 0, L(x.,y),
R(x,y), where x,y are individual variables and Q 1s a set
variable. Both individual and set variables can be bounded by
quantifies in the formulae of the language. To describe the
interpretation we consider the binary tree of finite words 1in

the alphabet {L,R}:

[ YV
NV

L R
\A/

Words in this alphabet will be called also vertices of the tree.
Values of individual variables are vertices of the tree, wvalues
of set variables are arbitrary sets of wvertices. The
interpretation of atomic formulae 1s the following: x € Q states
that vertex x is a member of Q, R(x,y) is interpreted as the
fact that word y is obtained by adding letter R to the end of x.
L(x,y) is understood in a similar way. Theory S2S5 1is thereby
fully described.
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The proof proceeds in the same way as Rabin’s, converting
the problem of the decidability of S25 1nto that of
demonstrating some properties of finite automata. What 1s new 1is
the method of demonstrating the most complicated of these
properties. The object of this paper is to present this method.
To make our exposition self-contained, we shall recall all
necessary definitions concerning finite automata.

We shall use the wvariant of the theory S25 1n which
formulae contain only set variables and atomic formulae are of
the form PeQ, Vert(P), R(P,Q), L(P,Q). Their 1interpretation 1s
as follows. Vert(P) indicates that P 1s a one-element set; PeQ
indicates that P 1s one-element and its unique element belongs
to Q; R(P,Q0) and L(P,Q) mean that P and Q are one-element,
P={x}, Q={y} and x,y satisfy R(x,y) (L(x,y), respectively). It
1s obvious that this wvariant of S2S 1s equivalent to the
preceding one from the point of view of decidability.

Let £ be an alphabet. A Z2-free 1s a binary tree whose
vertices are labeled by the letters of X, 1.e. a total wmapping
from the set of all vertices to Z. We shall define below the
notion of an automaton on Z-trees and the notion of acceptance
of a 2-tree by an automaton. In this way, to each automaton
corresponds a set of all Z-tree accepted by the automaton. Such
sets of Z-~trees will be called recognizable.

Let us associate with any set of vertices of a binary tree
a {0,1}-tree assigning 1 to the vertices of this subset and 0

elsewhere. Likewise, with each n-tuple <P, ,...P > of sets of
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vertices, we associate a {0,1})"-tree. A set of n-tuples of the
form <P,,...P > will be called recognizable if its associated
set of {0,1}"-trees 1s recognizable.

Theorem_ 1. Let A(P,,...,P ) be a formula of theory S2S, all
parameters of which are among P,,...,P . Then the set of all
{0,1¥"-trees corresponding to those tuples of wvalues of
P_which make A(P,,...,P ) true {8 recognizable. The
corresponding automaton can be effectively constructed whenever

AP,,...,P ) is given.

The proof of this Theorem proceeds by induction on the
structure of formula A. The main difficulty here is to construct
for a given automaton U another automaton &£ which accepts
precisely those trees which are not accepted by U. A new method
of doing this construction forms the basis part of this paper
(83) .

To prove the decidability of 525, it is sufficient to have,
in addition to this Theorem, an algorithm deciding whether or
not the set of trees accepted by the automaton is empty. Such an
algorithm is given 1n [1]. In the present paper we give the more
simple method for constructing of such algorithm (§2).

Let wus now proceed to some definitions and remarks

concerning finite automata.

Automata on e-words

We begin with the important notion of an automaton on

w-words, even though in this paper 1t plays only an auxiliary
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role.

If ¥ is an alphabet, an e-word over X 1s an infinite
sequence of letters of Z. An automaton U on e-words is given by:

1) a finite set S of states; the elements of ZS(subsets of
S) will be called macrostates;

2) a table of transitions, i.e. a subset P<SxZxS; for
<s,a,s’'>eP, we say that if the automaton U 1s in state s when
reading letter a then it can move to state s’;

3) a subset 5,c5 of 1initial states;

4) a subset Fc2® of final macrostates.

An automaton is called determinigtic 1f 1t has exactly one
initial state and its table of transitions 1s the graph of an
everywhere defined function from SxX to S (being in any state
and reading any letter of Z, the automaton can move to exactly
one state).

Let U be an automaton on w-words over £ and let A be an
o-word over Z. A run of U on A 1s an 1nfinite sequence of states
which may occur when Y reads A. There may be many runs as well
as none. But it is clear that for a deterministic automaton,
there 1s always exactly one run on the given o-word. More

precisely, a run is such a sequence (e-word) s s of states

A
of U that Sy 1S an initial state (i.e. s eS,) and, for each i,
if U 1s in state s, and reads a,, then it can move to state
s,,;- We can associate with any e-word its limit - the set of
all symbols occurring in it an infinite number of times. A run
whose limit 1s a final macrostate is called accepting. We say
that U accepts an e-word A 1f there is an accepting run of Y on

A. Otherwise, we say that U rejects A. In such a way, to every
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automaton there corresponds a set of w-words, namely the set of
all o-words accepted by this automaton. Such a set of e-words is

called recognizable. It is  well-known ([41) that any

recognizable set can be accepted by a deterministic automaton.

Automata on trees

We recall that a binary tree the vertices of which are
labelled by the letters of an alphabet Z is called tree over =2
(or Z-tree). An automaton on XZ-trees is given by

1) a finite set S of states with a distinguished initial
state s,eS; (subsets of S will be called macrostates as before);

2) a table of transitions - 1.e. a subset of the set
SxIxSxS.

Element <s,a,s’,s"> of this set will be represented by the

following scheme:

s,a
A scheme belonging to the table of transitions of U 1s called a
transition of U and we say that, 1f it happens that at a certain
vertex, U 1s in state s and reads a, then 1t may be at the
vertices immediately succeeding this vertex in states s’,s";

3) a list of final macrostates (each of them being, of
course, a subset of S).

Given an automaton on a X-tree, there are many possible
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runs of the automaton on the tree. Each run 15 an assignment of
states to the vertices of the binary tree according to the table
of transitions and such that the initial state is assigned to
the root of the tree. More precisely, a run of U on Z-tree A s
an S-tree H satisfying the following condition: the initial
state 1s at the root of H, and if x is an arbitrary vertex of
the binary tree which in A is labelled by a and in H 1s labelled
by s, and if the vertices xL, xR of run H are respectively
labelled by s’ and s", then <s,a,s’s"> 1is an element of the
table of transitions of Y. Now any run has many limit
macrostates (which is not the case for the automata on e-words):
there is one for each path. More precisely, let XX, ... be an
infinite path in the binary tree (1.e. a sequence of vertices in
which x=» and x, , is one of the two immediate successors of
x,). If a run H and a path are given, then the letters which
label the vertices lying along the path form an o-word. The
limit of this e-word (i.e. the set of states occurring 1n 1t
infinitely many times) is called the limit macrostate of the run
corresponding to the given path. A run is called accepting 1f
all limit macrostates (corresponding to all paths) are final.

We say that an automaton accepts a tree if there exists an
accepting run, i.e. a run for which all the limit macrostates
corresponding to all paths are final. Otherwise, when for each
run there exists a path whose limit macrostate is not final, we
say that the automaton rejects the input tree. A set of trees is
called recognizable if there exists an automaton accepting all
the trees of this set and no others. As we said above, our aim

is to prove (a) that the problem of emptiness of automate set of
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trees is solvable and (b) that the complement of any
recognizable set a is recognizable and that the corresponding
automaton can be constructed effectively from the automaton
accepting a. The remaining part of the present paper is devoted

to these proofs.

§2. THE PROOF OF SOLVABILITY OF EMPTINESS OF AUTOMATE SET OF
TREES

In this paragraph we shall construct an algorithm, which
given an automaton on trees decides whether the set of trees
recognized by this aulomata 1s empty, and which, moreover, finds
the regular tree in this set, 1f the set 1isn’t empty (the
definition of a reqgular tree 1s given 1n the following two
lines).

Let us give the definition of a regular Z-tree. In this
definition the notion of a finite deterministic transducer is
used. A finite transducer on words is a finite synchronous
automaton with output. It has two alphabets: the input one and
the output one. After reading current letter of the input
alphabet the transducer outputs one letter from the output
alphabet. The output letter depends on the input letter and on
the current state of the automaton. The transducer outputs also
one letter before reading the input word (we’ll call this letter
inttial). Thus a finite transducer can be defined by t{he input
alphabet X, output alphabet A, the set of states S, the initial

state SO, the initial letter B, and the set of transitions.
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Formally, the set of transition 1s a everywhere defined
function from SxZ into Sx4. '

Definition. A X-tree 1is regular 1f there is a finite
transducer with the input alphabet {L,R} and output alphabet X
that after reading any word u over {L,R} outputs the mark of the
vertex u in this tree. (Thus the mark of the root will be the
initial letter.)

Any transducer satisfying this definition will be called
the transducer generating the iree.
on Z-trees decides whether the set recognized by the automaton
is empty. 2) Any nonempty recognizable set of Z2-trees has a
regular Z-tree and if this set is recognized by an automaton
with n states then there 1s a {ransducer with nl states
generating a Z-tree in this set.

Proof. a) Firstly, 1let us proof the existence of a
transducer generating a Z-tree in recognizable nonempty set of
2-trees. This will be proved by 1induction, the parameter of
induction 1s the number of states of the automaton on trees that
recognizes the set. In order to make the induction step we nmust
prove a more general assertion. Let us state it. Let us
introduce the notion of a Z-tree with dead ends. Let D be a
finite set disjoint with Z. The elements of D will be called
dead-ends.

Definition. A Z-tree with dead-ends from D is any subtree
of the whole binary tree each vertex of which has either 0 sons
(1s a leaf) or 2 sons, the leaves of which are marked by symbols

from D and the internal vertices of which are marked by letters
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from .

Evidently every Z-tree is also a Z-tree with dead-ends from
D (for any D).

Let us give the definition of a Z-automaton with dead-ends
from D. The only difference with a Z-automaton 1s that a

Z-automaton with dead-ends from D can have transitions of the

L/

s,a

form

where p or q or both are dead-ends from D. That is the set of
transitions 1s a subset of the set SxZx(SUD)x(SuD). The sets S
and D must be disjoint. A possible run of a Z-automaton with
dead-ends from D on a Z-tree T with dead-ends from D is any tree
H that can be obtained from T by assignment to each internal
vertex of D a state in such a way that the root 1is marked by
initial state and the obtained marking is consistent with the
set of transitions. That 1s, for every internal vertex x of H if
a 1s a mark of x from £, s 1s the assigned mark from S and p and
g are respectively the marks from SUD of the vertices xL and xR
then the tuple <s,a,p,q> belongs to the set of transitions. An
ordinary automaton on Z-trees 1is a particular case of a
2-automaton with dead-ends from D (for any D). A possible run is
called accepting if the limit macrostates of all its infinite
paths are final.

Now let us extend the notion of a regular tree to the trees
with dead-ends. A transducer with 1input alphabet {L,R} and
output alphabet ZuD generales a Z-tree T with dead-ends from D
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1f after reading any word v over {L,R} it outputs the mark of
the vertex v in T.

We will prove by induction the following assertion. If a
Z-qutomaton U with dead-ends from D accepts some Z-tree with
dead-ends from D then U accepts some Z-tree with dead-ends from
D generated by a transducer with at most n! states. The
parameter of induction 1s the number of states of U (other
parameters can be arbitrary). Let wus call for brevity the
automata accepting nonempty sets the nonempty automata.

Base of induction. Let Y be a nonempty Z-automaton with
dead-ends from D having only one state. As U accepts some Z-tree
with dead-ends the set of transitions isn’t empty. Let us denote
the single state by s. Consider two cases.

1). There is a transition of the form

where t,,t, are dead-ends.
Then U accepts the tree with dead-ends

t t,

N/

generated by a transducer with one state.

2). There is no transition with two dead-ends on the top. In
this case every accepting run has infinite path therefore the
macrostate {s} is final. There is a transition of one of the

following forms



s,a s,a 5,a
where t is a dead-end. Correspondingly U accept one of the

following trees

a t t\\\\///a a a a\\\v////a
a t t\/a a /a

All these trees are generated by a transducer with 1 state.
Induction step. Let a nonempty Z-automaton U with dead-ends
from D have n=2 states. We will regard the states as the
residues modulo n. Thus for every state k we can speak about the
state k+1. Without loss of generality we can assume that U has
single initial state (as the recognized by U set is the union of
the sets recognized by the automata obtained from U by leaving
only one 1initial state). Let the i1nitial state be 0. Let us
.,€

define 2n new automata B, ..., B _..C,, having n-1

n-17
states.

B, is obtained from Y by the following transformation. The
set of states of B, is {0,..., n-11\{k} and the set of dead-ends
1s D. All transitions in which the state k occurs are deleted
and all macrostates having k are deleted.

€, is obtained from U by the following transformation. The
initial state of €, 1s k. The set of states 1s {0,...,n-11\{k+1}
and the set of dead-ends is Du{k+1}. All the transitions having

(k+1) on the bottom are deleted and all the macrostates having
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(k+1) are deleted.

Let us consider two cases

Case_1. For some k the automaton B, is nonempty. Let us
define a regular Z-tree with dead-ends from D accepted by U. Let
4" be the automaton obtained from U by deleting k from the set
of states, adding k to the set of dead-ends, deleting all
transitions having k on the bottom and deleting all macrostates
having k. Let us prove that ¥’ is nonempty. Pick some Z2Z-tree T
with dead-ends from D accepted by U. Let us fix an accepting run
Hof WonT. Let T" consist of all vertices u of T such that no
ancestor of u 1s marked by k in H (u 1tself can be marked by k).
Evidently T’ 1s a Z-tree with dead-ends from Du{k}. Evidently it
is accepted by U’.

By induction hypothesis there is a Z-tree T, with dead-ends
from Du{k} generated by a transducer with (n-1)! states and
accepted by U’. Again by induction hypothesis there is a Z-tree
T, with dead-ends from D accepted by %, and generated by a
transducer with (n-1)! states. Let us "glue® to all leaves of T,
marked by k the Z-tree T, and erase the mark k 1in that leaves
(now all leaves that were marked by k are marked by the root
mark of T,). We have obtained a 2-tree T; with dead-ends from D.

Firstly, T; is accepted by Y: the accepting run of U is
obtained by the same gluing of an accepting run of U" on T, and
an accepting run of B, on T,. Indeed, every infinite path in the
obtained run either belongs to the run of % (and hence has
final limit macrostate) or from some place is in the run of %,
(and hence also has final limit macrostate).

Secondly T, is generated by the transducer obtained by
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gluing the transducers generating T, and T,: in those states 1in
which the first transducer outputs the dead-end k the new
transducer outputs the initial letter of the second transducer
and switch 1t on. The number of states of the new tramnsducer is
(n-1)!'+(n-1)!sn! (as n22).

Case 2. For all k the automaton B, 1s empty. Let us prove
that in this case the whole macrostate {0,1,..., n-1} is final
and for all k the automaton €, is nonempty. By condition U
accepts some Z-tree T with dead-ends from D. Let wus fix some
accepting run H of W on T. Let us prove that H has an infinite
path with final macrostate {0,1,..., n-1}. As B, is empty there

is a vertex v, in H marked by 1. As B, 1s empty there is a

i

vertex v, in H that is marked by 2 and follows vertex v, (that

1
1s v,=vgu for some word u over {L,R}). And so on. We have found
an infinite path 1n H which passes through all states
G,1,..., n-1 infinitely many times. As H 1s an accepting run, the
macrostate {0,1,..., n-1} is final. |

Let us prove that for all k the automaton €, is nonempty .
Let us take arbitrary k. Let us fix again a run H of U on a
Z-tree T with dead-ends from D. We have already proved that some
vertex v of H 1is marked by k. Consider the Z2-tree
H ={ulva € H}, in which the vertex u is marked as the vertex wvu
in H. Consider the subtree H, of H, consisting of all vertices u
such that no their ancestor is marked by (k+1)(u itself can be
marked by k+1; in this case we delete the Z-mark of u).
Evidently we have obtained an accepting run of €, on some Z-tree

with dead-ends from Du{k+1}.

Now let us construct a regular Z-tree with dead-ends from D
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accepted by U. By induction hypothesis for each k there is a
2-tree T, with dead-ends from Du{k+1} accepted by €, and
generated by a transducer with (n-1)! states. The Z-tree T with
dead-ends from D is constructed as follows. Let us take T,. Let
us "glue” to all leaves of T, marked by 1 the tree T, (and
delete the mark 1 of those leaves). Let us "glue" the tree T, to
all leaves marked by 2 of the obtained tree. And so on. Let wus
denote the tree obtained by repeating this procedure o times by
T. Obviously T is a Z-tree with dead-ends from D. We claim that
U accepts T and T 1is reqular.

Let us prove that U accepts T. To this end let us fix for
every k an accepting run H, of €, on T,. Let wus perform with

H H

g»----H,_, the same "gluing” as with Tg,..., T, - We'll obtain

1
arun Hof YonT. Every infinite path in H either from some
place belongs to some run of €, for some k (therefore has final
limit macrostate) or passes 1nfinitely many times through all
states (therefore its limit macrostate is {0,1,..., n-1}, which
is final).

The tree T is regular because it can be generated by
"gluing” the transducers generating T,,...,T _,. The number of
its state is equal to n-(n-1)!=n!.

b). Let us now prove that given a Z-automaton U with
dead-ends from D we can decide whether it 1s empty and construct
the transducer generating the accepted tree with dead-ends. Our
algorithm 1s recursive (in recursive calls the number of states
decreases). Let us be given Y. Consider two cases.

Case 1. U has single state s. If the set of transitions is

empty then U accepts empty set. Otherwise we look if there is a
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transition with two dead-ends on the top. If there 1is such a

transition then Y is nonempty. Otherwise U is empty if and only
if the macrostate {s} is final. Obviously we can construct the
transducer with single state generating an accepted tree 1if it
exists.

Case 2. Y has n2Z states. Making the recursive calls we
check whether there is k such that 8, is nonempty. If there is
such k then U 1is empty if and only if U’ is empty (U’ is defined
in the item a)). Making the recursive call we can decide whether
UY” is empty.

Otherwise (if for all k, B, is empty) U is nonempty if and
only 1f the macrostate {0,1,..., n-1} is final and for all k, @k
is nonempty (this 1s in fact proved in the proof of case 2 of
item a)). Making recursive calls we can decide whether this is

true. The transducer is constructed as it was described.

The proof is finished.

It turns out that the bound n! in theorem 2 cannot be
improved.

Theorem_3. There is a constant ¢ such that for all n there
is a nonempty set of {0,1}-trees accepted by an automaton with
cn states and having no {0,1}-iree generated by a transducer
with less than n! states.

Proof. lLet us introduce the notion of an n-ary Z-tree
(n € N). Recall that binary Z-tree is a mapping from the set of
all words over {L,R} into X. Likewise a n-ary Z-tree is a
mapping from the set of all words over the alphabet {1,...,n}
into 2. If xg,x,,%,,... is a path in n-ary Z-tree and x,=x,_,a,,

a. e {1,..., n} then a, w1ll be called the direction of the path
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on {~-th level. The notions of an automaton on Z-trees and of a
transducer can be naturally generalized to n-ary Z-trees.

Firstly we will construct for every natural n a nonempty
set of n-ary {1,2,...,n}-trees accepted by an automaton with cn
states and having no tree generated by a transducer with less
than n! states. Then this set of trees will be transformed into
the set of binary {0,1}-trees with the same properties. This
will complete the proof.

Let us fix n € N and define the set M of n-ary Z-trees

where Z={1,2,..., n}. Let T be a n-ary Z-tree. Define in what
case T belongs to M. Let us take an arbitrary path in T. Let
a,,3,,...,8,,... be its directions and pg,p,.pP,,---, Pr---- Dbe
its marks (that is p, 1s the mark of the vertex a,...a, in T).

We'll call Pg the mark of the path on k-th level. Let N be the
set of all a € {1,...,n} that occur infinitely many times in the

sequence a,,a,,ag, ..

19832855+ 28pp, 100 -
set of the directions on odd levels. Let P be the limit set of

Briefly speaking, N is the limit

the marks on even levels. Let us call the path correct if the
maximal element of P is equal to the number of elements of N
(that is marP=INI). By definition T belongs to M if all paths in
T are correct.

Let us prove that M 1sn’t empty. To this end we define a
transducer with 2n! states generating a tree in M. Reading the
a

sequence a,,a,, ..., a,,... of directions the transducer computes

1
the so called "sequence of last occurrences of the directions on
odd levels". Let us define this sequence. This 1s a permutation
of the set {1,2,...,n}. In the beginning it 1is equal to

(1,2,...,n) and after reading the current direction a on an

2k+ 1
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odd level the current permutation Il,, is transformed as follows;

a,,,; is moved in the beginning of II,, (the previous occurrence
of a,,,, 1is deleted). Let us define the output of the
transducer. On the odd steps (i.e. after reading a,...a,, ,) it
outputs 1. Let us define the output symbol on an even step, say

after reading a,...a Let 1 be the length of the prefix

2k+1° 2k+1

of M,, that was changed on the step 2k+i (i.e. l,, , is equal to
the number of the occurrence of a,, , 1n 1. ). The transducer

outputs this 1 on the step 2k+2. The initial letter of the

2k+ 1
transducer is 1.
Let us prove that the tree generated by the defined
transducer belongs to M. Let us fix an arbitrary path in this
tree. Let N be the limit set of the directions on odd levels of
this path. Then for all sufficiently large k the prefix of II, of
the length INI 1s a permutation of elements of N therefore the
number output by the transducer on the k-th level will be less
than or equal to INI. On the other hand, as every direction from
N occurs infinitely many times on odd levels, the INi~th element
of the sequence 1infinitely many times 1s moved in the beginning
therefore the transducer will infinitely many times output INI.
Let us prove that M is accepted by an automaton with 2n
states. The states of this automaton are of two types: the first
type consists of one state for every direction and the second
type consists of one state for every lelter from Z (alltogethef
2n states). On the even levels (1.e. after reading a,...a,,) the
state of automaton 1is equal to the mark of the current vertex
(i.e. the mark of a,...a,,). On the odd levels (i.e. after

reading a,...a,, ,) the state of automaton 1s equal to the Ilast



-239~

direction (1.e. a,, ). The initial state is arbitrary state of
the second type. The final macrostates are those states in which
the maximum of the states of the second type 1s equal to the
number of states of the first type.

Let us prove that there is no transducer with less than n!
states generating a Z-tree 1n M. Assume that B is a transducer
with less than n! states generating a tree in M.

Let p=(V,,...,v,) be a permutation of the set {1,..., n} of

directions. Consider the word

up=(...((v?’vz)n!...vn)"!

where w" denotes w w ...w, k times. We’ll call the word
W= (v v v T v

the block of level 1. Thus the block of level { consists of n!
blocks of level (1-1) and of the letter v, and up consists of n!
blocks of level n. Define for any word u the word u to be the
word obtained by inserting 1 before each letter of u (for
example 010=101110). Let B work on the 1input word Ep' Consider
the states of B before reading the occurrences of w, in Up- As
the number of occurrences is greater than the number of states
there are two occurrences of w_ in u

P
is in the state s, before reading these two occurrences. Let us

and a state S, such that 8

call these two occurrences of Wn in Ep marked. Let now B start
in the state s, and work on the input word w, . Again there are

two occurrences of Wn in Wn and a state s_ such that U is in

-1 -1

the state s, _, before reading these two occurrences. Let us call
these two occurrences of w__, 1n w_ marked. Let us call the

marked occurrences of w__, in the marked occurrences of w_ in Ep

also marked. Thus we have four marked occurrences of w__, o
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Repeating this procedure n times we get a state s, and 2" marked

1

, in Ep such that if %8 reads Gp then before

reading each marked occurrence of w, in Ep it is in the state

occurrences of w

s,. As s, depends on p we'll write s;(p). As the number of
permutations of the set {1,..., n} is greater than the number of

states there are two different permutations p and p° such that

s,(p)=s,(p’). Let p=(v,,..., v, p'=(v,’, ..., v.”). Let flsn is
defined by the equalities v ,=v,’,...,v,_=v _|", v =v '

Let us prove that the word o, has a subword y over
{v,,...v;} having occurrences of all the letters v, ...,v, and

such that if B works on input word Ep then 8 1s in the state
s,(p) before and after reading y. Indeed, let us pick a marked
. in Ep' It has two marked occurrences of Wi
(we’ll call them left and right). Let us pick in each of these

occurrence of w,_

two occurrences a marked occurrence of w,. Take the part of u
from the occurrence of W1 in the left occurrence of WL in u
(including w,) up to the occurrence of w, 1in the raight
occurrence of w, 1n Ep (excluding w,). This part is equal to vy
for some word y over {v, ..., v.}. The word y satisfies the
required conditions. Let us denote the word obtained from up, by
the same procedure by y’.
Now let us pick a word x such that after reading x, 8 is in

the state s (p). Consider three o-words over 2

y
y' A
X yy yy vy'...

Any of these three o-words defines an infinite path in n-ary

E
=<

e

=

1} t

"l
|~

tree.
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Evidently the limit sets of the directions on odd levels of

these paths are respectively equal to

(Vi""’vi-l’vi}
r
(vI,...,vi_1,vi }
14
v,V v v, '

On the other hand let P and P° are the sets of letters
output by 8 on even levels when 1t starts in the state s, (p) and
reads respectively y and y’. Then the limit sets of the letters
output by B on even levels on these o-words are respectively
equal to
P
p’

PUP’

Thus we have mazP=1{, mazP’=1, maz(PUP")={+1. Conlradiction.

We have constructed the nonempty set M of n-ary
{1,...,n}-trees accepted by a deterministic automaton with cn
states and having no tree generated by a transducer with <al
states. Let us construct the set of binary {0,1}-trees with
these properties. Clearly without loss of generality we may
assume that n=2" for some k. For every n-ary {1,...,n}-tree T
let us define its “counterpart” T, which is a binary {0,1}-tree.
Let us do this in two steps. On the first step let us define a
binary {1,...,n}-tree T as follows. Each "fork" in T the form

T T, T

a

1

T P T, are trees) is replaced by the "fork”



1 2 n
1 1 1 1 k levels
w

The obtained binary tree is T. Then we replace in T every

"fork" of the form

where E .. .E, is the binary code of the letter a (under some
fixed coding of the elements of {1,...,n} with binary words of
length k) and T, is the binary tree marked with only zeros. The
obtained tree is T.

Define M={TIT € M}. One can easily prove that M is accepted
by a deterministic automaton with cn states. The proof of the

lower bound n! can be easily transformed to the proof of the

same bound for M.

The theorem is proved.
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§3. PROOF OF THE RECOGNIZABILITY OF COMPLEMENTATION

Strategies

Let % be an automaton on Z-trees. Our aim is to construct
an automaton & accepting precisely those trees which are
rejected by U. This will be done in two steps. First, we
introduce the notion of ‘'rejecting strategy" for a given
automaton on a given tree. Such a strategy will exist if and
only if the automaton rejects the tree. In the second step we
shall construct an automaton £ having an accepting run if and
only if there exists a rejecting strategy for U. This will be
the required automaton.

A rejecting strategy 1s a strategy for finding a path with
a non-final limit on any run of the given automaton. We look for
such a path step by step, starting at the root of the tree and
proceeding in the following way. Let a run X be given. In the
first step, we consider the transition at the root and we choose
one of the two possible directions -~ left or right. Suppose that
the left 1s chosen. In the next step, we consider the transition
we have in the left vertex of the first level of run X (vertex
L) and, once again, we choose a direction. Thus, at each step, a
direction is chosen (by respecting the transition observed in
this step) and a move to the next vertex in the chosen direction
is effected. In this way, applying a strategy to run X, we get
an infinite path in the run. A rejecting strategy applied to any
run must give a path with a non-final limit.

Let us describe the notion of a strategy more formally.
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Suppose that automaton % and input tree T are given. Consider

all transitions possible at the root of T, i.e. all transitions

of the form

where s is the initial state of U and x is the letter labelling
the root of T. Let us divide them in some way into "left
transitions” and "right transitions". If a run X starts with a
left (right) transition, then the strategy will seek in this run
a path with a non-final limit going in the first step to the
left (right, respectively). Having made this division, we have
defined the states possibly occurring at L during the search.
Let us call them sfates possible at L, or in short L-possible
states. In other words, they are the states which are top left
in the transitions that have been chosen as left ones. We
similarly define R-possible states or states possible at R.
(Note that the sets of L-possible and R-possible states can by
empty). Furthermore, we divide the tramsitions of Y having at
the bottom an L-possible state and the letter labelling L in the
input tree (lhe L-possible transitions), into the left and right
ones. This division determines how the strategy will seek a path
with a non-final limit in the second step. Afterwards, we define
which states are possible at the vertices LL and LR. Similarly,
having divided the R-possible transitions into left and right
ones, we define the states possible at the vertices RL and RR,

and so on.
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To give a strategy for automaton U on input tree T means to
decide for each vertex which of the transitions possible at this
vertex should be considered as left ones and which as right
ones. Note that the set of states possible at a given vertex
(and, hence, the set of transitions possible at this vertex)
depends on the decision made in the preceding step.

So, let a strategy for the given automaton U and input tree
T be given. The strategy seeks, as described, a path in each run
of Y. The strategy is called refecting if all the paths it
defines, for all runs of U, have non-final (for U) limits, and
moreover, each probable path of the given strategy has a
non-final limit. By a probable path of the given strategy (the
automaton and the input trees are fixed) we mean a path which
can be obtained as follows. First of all, choose one of the
transitions possible at the root. Then look at what the strategy
proposes - to consider this transition as left or as right. Let
it be left. Take the state which is top left in this tramsition.
It is one of the L-possible states. Then, choose an L-possible
transition starting in this state. Again consult the strategy.
Suppose this transition is right. Take the state which 1is top
right in this transition. This state is LR-possible. And so on.
If this process does not terminate because of the absence of
possible transitions starting in the given state, we obtain a
path 1n the tree and the states lying along 1t. These paths,
obtained in this way, are called probable paths of the given
strategy. Every path obtained by applying the strategy to a run
of automaton U on tree T is probable. The inverse 1implication

1s, however, not generally true because a probable path requires
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a selection of transitions only "lying along” the path and we do
not know whether this selection can be extended to a run on the
whole tree.

So far, we have introduced the notion of a strategy (for a
given automaton on a given input tree) and we have distinguished
the rejecting ones. The existence of a rejecting strategy for AU
on T is sufficient for ¥ to reject T. To make this condition
necessary, we have to change the notion of strategy by accepting
the existence of a "memory of finite size" in 1it. The above
given notion of strategy - a preliminary one -~ Dbecomes a
particular case of the more general notion of strategy that we

shall present in the next section.

Modification of the notion of strategy
- strategy with memory.

A strategy with memory differs from the previous one when
it is deciding how to continue to seek a path with a non-final
limit in a given run. The new strategy considers not only the
transition at the vertex it 1s working on but also the history
of the search reflected in the "inner state”. Actually, applying
the strategy to two different runs, it is possible to reach the
same vertex in both cases, with the same transitions at this
vertex. The existence of a "memory" allows it to go, in one case
to the left, and in the second, to the right.

The new notion of strategy will be defined as follows.
Suppose that each state s of U divides into one or nmore
,S

different copies s,,s,... (more formally, we are given a set C

1
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of all copies of all states and a surjective mapping ¢ of C onto
S).

Let for every pair <s,s’> and every copy ¢ of the state s a
copy ¢’ of the state s’ be given. ¢’ is called the result of the
application of transition s ~— s' to the copy c. (More
precisely, we are given a function y: SxC — C s.t.
o(p(s’,c))=s’ for every s’eS and every ceC. We speak about a
mapping from SxC rather than about a mapping from SxSxC because
of s=¢(c).) Finally, let one of the copies of the initial state
be fixed and called the initial copy. In this situation we say
that a strategy set for automaton ¥ is given. We are going to
define the notion of a rejecting strategy for U on tree T based
on the strategy set M. If M contains exactly one copy of each
state, then the new definition coincides with the old one.

Previously, the chosen strategy was fixing in each vertex a
set of possible states, now, instead of this, we shall have a
set of possible copies. (Note that it may happen that one copy
of a state will be possible and another copy of the same state

will not).

SI SII
Let \\\J// be a transition of U and let ¢ be a copy of
s,a
c’ c®
the state s. Consider the scheme \\\/// , Wwhere c¢’,c" are
cha

obtained as results of the application of transitions s +— s’
and s +— s" to c¢. (Note that ¢’ and c¢" are copies of s’ and s",
respectively.) All transitions of this form (obtained by
applying all transitions of ¥ to all copies ¢) will be called

copy-transitions. The copy-transitions, with a copy possible in
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some vertex at the bottom are called copy-transitions possible
at this vertex. The strategy divides copy-transitions possible
at a vertex 1nto the left and the right ones. (Two
copy-transitions obtained from the same ‘“ordinary"” transition
need not to be of the same direction). This division defines the
sets of copies possible in the successor vertices: for exanmple,
the set of copies possible in the vertex xL is the set of all
copies which occur at the left top of copy-transitions that are
possible 1n x and related by the strategy to the left ones. The
initial vertex has exactly one possible copy - the initial copy
(of the initial state). The probable paths of the strategy are
defined as before with the following modification: each path is
related to a sequence of copies (and not to a sequence of
states, as previously). However, when defining the notion of a
rejecting strategy, we shall be interested only in states
(remaining 1ndifferent to which copy of the given state occurs).
That is, a strategy is called rejecting if for each probable
path the corresponding sequence of states has a non-final limit.

Now, let a rejecting strategy for U on tree T based on the
strategy-set M be given, and moreover, let a run on T be given.
How can we find in this run, using the rejecting strategy, a
path with a non-final 1limit? This demands selecting a copy in
each transition, starting at the bottom and moving upwords. We
start at the initial copy of the initial state. Then we look at
the copy-transition which lies in the root. Suppose i1t to have
been designated as the left. Hence, we have to move to the left
into the vertex L. The copy-transition which 1lies there 1s a

possible copy-transition and it was, again, designated as left
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or right. Depending on that, we have to move either to the
vertex LL or to the vertex LR. And so on. The path we thus get
will be one of the probable paths and, therefore, its limit will
be non-final. We have now proved the implication (2) — (1) of
the following statement.

strategy-set M that for any tree T the conditions

(1) "U refects T"
and

(2) "there exists a rejecting strategy for U on T based on
G
are equivalent.

Our first aim is to give the proof of this theorem by
showing that for a suitable strategy-set M, (1) implies (2).
Then, the only remaining thing to establish will be that the
existence of a rejecting strategy for 4 on T based on M is

equivalent to the acceptance of the tree T by another automaton.

Beginning of the Proof of Theorem 4:

Introduction of Dead-ends in Automata and Strategies

To prove Theorem 4, we shall have to generalize it by
introducing dead-ends to automata on trees. Let A be a finite
set of dead-ends. Instead of Z-trees, we shall consider
ZxP(A)-trees and not the Z-trees with dead-ends from 4 as in &2,
i.e. trees the vertices of which are labelled by both a letter
from £ and a set of dead-ends. The dead-ends of this set will be

called dead-ends allowed in the given verter. The definition of



-250-

automata with dead-ends was given in 82.

Let us now give the definition of a run of an automaton
with dead-ends on a IxP(A)-tree. The run of automaton U on a
ZxP(A)-tree is a subtree of the complete binary tree, in which
each vertex has either 0 or 2 successors. The vertices with 0
successors are labelled by dead-ends, those with 2 successors by
states. Moreover, each transition occurring here has to be a
transition of the automaton Y. End of the definition of a runm.

A run is called accepting if, first, all its dead-ends are
allowed (that is, belong to the P(A)-label of the corresponding
vertex) and second, the limits of all infinite paths are final
macro-states. We say that a IxP(d)-tree is accepted by U (the
automaton with dead-ends) if there is an accepting run;
otherwise, we say that the tree is rejected by ¥ . let us now
explain what is a rejecting strategy for a given automaton on a
given ZxP(A)-tree based on a glven strategy-set M. It seeks,
starting in the root, either an infinite path with a non-final
limit or a finite path ending in a non-allowed dead-end. When
considering the possible copy-transitions, it relates them
either to the left ones or to the right ones. What is new is the
fact that in some of these transitions there may be one or two
dead-ends at the top. (Dead-ends do not have any copies).
Suppose for example that in a possible copy-transition, there
is, top left, a dead-end and top right a state (or, more
exactly, a copy of a state). If this tramsition is related to
the right ones, then we get a possible copy at the right
successor vertex; 1f it is related to the left ones, we get a

dead-end in the left successor vertex. In this way we get, in
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each vertex, in addition to the set of possible copies, a set of
possible dead-ends. For example if a vertex is the left
successor (of the preceding vertex) then this set is the set of
all dead ends lying at the left hand side of the top of the copy
transitions possible at the preceding vertex and related to the
left ones. Probable paths will be of two kinds now: infinite
ones, defined as before, and finite ones ending 1in a possible
dead-end. We are ready now to formulate the promised

generalization of Theorem 4.

Theorem_4'. Let automaton U in alphabet X and a set A of
dead-ends be given. Then there exists such a finite strategy set
M that for any 2ZxP(A)-tree T, the following statements aré
equivalent:

(1) "4 rejects T"

(2) "there exists a refecting strategy for U on T based on
the strategy set M".
The implication (2) +— (1) can be proved as before.
The implication (1) = (2) is going to be proved by induction
on the number of states of Y (with an arbitrary number of

dead-ends) .

The case of the automaton with one inner state.

We want to prove Theorem 4’ for the automaton with one

inner state (denoted in the following by 0) and an arbitrary

number of dead-ends. As a strategy set, for this automaton, we
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can use the set containing the unique copy of the unique state.
We have to prove that one of the two following possibilities is
always true: either there is an accepting run or there is a
rejecting strategy. Let us consider two cases. First case:
macrostate {0} 1s not final. In this case, the 1limit of any
infinite path is not final and any accepting run must be finite.
Moreover, the definition of a rejecting strategy requires the
limits of all probable paths to be non-final and this condition
1s here automatically fulfilled. In this case, we shall
construct a rejecting strategy assuming that there 1is no
accepting run. In the second case, when macrostate {0} is final,
the limit of each path 1is final; and when constructing an
accepting run, we have only to verify the condition concerning
dead~ends. In this latest case, we shall construct an accepting
run assuming that there is no rejecting strategy.

First_case: {0} is not final.

Let no accepting run exist. This means that no transition used
at the root can be the beginning of such a run. More precisely,

the following Lemma is true.

Lemma 1. Let tree T with the root labelled by aeZ be

rejected by automaton Y.
0 0
(a) If ls a transition of automaton
Oha
then the subtree with root in L or the subtree with root in R is

rejected by U
0 o)

(b) If \\av// is a transition of automaton
Ja
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then the dead-end & is not allowed (in verter R) or the subtree

with root in Lots refected by U.

e}
¢y If \\\v///ts a transition of U then the dead-end d
0a

is not allowed (in vertexr L} or the subiree with root in R 1is

rejected by Y.
d o'

(d) If \\\/// s a transition of the automaton then at least
0Ya

one of the two dead-ends is not allowed (in the corresponding

vertex).

Proof. This Lemma is almost obvious: if its statement were
not true, then 1t would be possible to construct an accepting
run of U, Dby "gluing" the described parts (in (a), e.g.,

"gluing” accepting runs on L-subtrees and R-subtrees).

We are now ready to describe a rejecting strategy of Y on T
(recall: U rejects T, {0} is a non-terminal macrostate). On the
first step, we have to divide all transitions having at the
bottom the same letter as the tree T has at its root, into left
and right ones. This will be done as follows: the transition is
considered as a left one if it has top left either a non-allowed
dead-end or the macrostate {0} and, in this latest case, the
L-subtree is rejected by U. If neither of those conditions is
satisfied, then the transition is considered as a right one.
Following Lemma 1, it then has top right either a non-allowed
dead-end or the state {0} and, in the latter case, the R-subtree
is rejected by U. The previous considerations vyield that all

dead-ends possible at L and R are not allowed; and, moreover, it
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is clear that if the state 0 is possible at one of the vertices
L and R, then the subtree with the root at this vertex will be
rejected by U. This gives us the opportunity to divide similarly
all transitions possible at L and R into left and right ones.
Continuing thus, we finally get a rejecting strategy: the
condition for dead-ends is satisfied and, as mentioned before,
there 1s no need to verify the condition for infinite paths. The
first case 1s complete.

second_case: {0} is final. ,
We shall now proceed in the opposite direction: supposing that
there is no rejecting strategy, we shall construct an accepting
run. So, let no rejecting strategy for Y on the tree T exist.
This means that in the first step, it was not possible to assign
certain transitions either to the right or to the left in such a
way that we could continue with the construction of the

strategy. To put it more precisely, we arrive at the following.

for automaton U on the tree T, the root of which is labeled by
letter a. Then there extists a transition of M for which one of

the following statements holds:

0 0
(a) the transition ts of the form \\\//// and there 18 no
0Ya
refjecting strategy for U on the L-subtree and 08 the R-subtree;
o)
(b) the transition {s of the form , Lthere 1{is no
0%a

rejecting strategy on the R-subiree and d is an allowed (in L)
dead-end;
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0 B

(¢c) the transitton ts of the form \\\//// , there 1{s no
0Ya
reJecting strategy for U on the L-subtree and ® is an allowved

{in R) dead-end,
o) o)

(d) the transition is of the form \\\//// , where & and &' are
0,a
allowed in L and R dead-ends respectively.

Proof. The Lemma is almost obvious: if such transitions did
not exist then we would be able to designate each transition (at
the root) as a left one or as a right one and, going on in the
same way, to obtain a rejecting strategy. (For example, either

the L-subtree or the R-subtree would have 8 rejecting strategy

0
for any transition of the form \\\\/// ; depending on the
0

Ya
subtree, we would simply follow the (existing) rejecting

strategy on this subtree).

We shall now construct an accepting run (of automaton U
with final macrostate {0} which does mnot have any rejecting
strategy on the tree T). Take the transition guaranteed by

Lemma 2 and put it in the root of the run. Suppose for example
o]

that it is of the form \\v///
0

"a
Then d is an allowed dead-end and the R-subtree does not have

any rejecting strategy. If we apply Lemma 2 to the R-subtree we
obtain the next transition, and so on. The resulting run will be
accepting: the condition for dead-ends 1is satisfied and the

condition for paths is obvious because of {0} being final.
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The case of one-state automaton is proved.

Induction step
(description of the strategy set and two lemmas)

So, we are now to prove Theorem 4’ for automaton Y with n+l
states, assuming it to be true for any automaton with n states
(and an arbitrary number of dead-ends). Let us denote the states
of W by 0,1...,n and consider them as the elements of N/ (n+1) in
order to speak conveniently about state (i+1) as following state
1. 0 is considered as the 1nitial state.

For the purposes of proof, we shall introduce some
auxiliary automata. U, will denote the automaton that has the
same table of transitions and the same set of final macrostates
as U, but the initial state of U, is i. B, will denote the
automaton derived from Y by considering state i as the initial
state and i+!1 as a dead-end. This means that the number of
states decreases by one (because of the exclusion of 1+1), and
the number of dead-ends increases by one (because of the
addition of i+1). Further, all tramsitions having i+1 at the
bottom are excluded, and all final macrostates containing i+1
are excluded, while the transitions having i+1 on the top are
kept (but i+1 is considered as a dead-end and not as a state).
Automata B, have n states (U has n+! states). By the induction
assumption, for any 1=0,..., n-1, there exists a strategy set M,
which satisfies the following condition: tree T is rejected b§
automaton B, 1f and only if there exists a rejecting strategy

for B, on T based on M . This strategy set contains a certain
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number of copies of each state of B,, hence, the copies of all
states of U except for i+1. Assume that sets M, are pairwise
disjoint. We shall now describe the strategy set M for U. It
contains all the copies contained in the sets M. (In this way,
a copy of i belongs to M if and only if it belongs to one of the
sets M, . Note that M, does not contain any copy of the stale
k+1). Let us describe what 1s the result of the action of the

transition 1 ~— j on copy ¢ of state 1. Let ceM, . If the
0

result of the action of the transition 1 > j on ¢ is defined

in MkD (i.e. if j=k +1; 1=k +1 is always true because ¢ belongs
to M, ), then it will be considered as the result of the action
0

of i v j on c in M. Otherwise (i.e. when j=<kg+1), the resuit
is defined as the initial copy of state j in set MJ. To finish
the description of set M, it remains to designate its initial
copy. It will be the initial copy of state 0 in M,.

~ The above constructed set M is the required set: automaton
U rejects T 1f and only if there exists a rejecting strategy for
Y based on M. To prove this, we shall need the following two

lemmas .

Lemma 3. Automaton 9

________ i

accepts tree T if and only if
automaton B, accepts tree T', which is obtained by taking T and
adding the dead-end i+1 into the vertices which are roots of
subtrees accepted by U, ,.
Before formulating the second lemma, let wus 1introduce a

notation: M' 1s the strategy set which differs from M in a
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unique point - the initial copy is the initial copy of state 1

in Mi.

automaton %, on tree T if and only tf there exrists a rejecting
gtrategy (based on M.) for automaton B, on tiree T", which s
obtained by taking T and adding the dead-end i+1 to the vertices
which are roots of subtrees on which there 1is no rejecting
strategy for W, , based on M°*'.

Proof of Lemma 3. This lemma has nothing to do with
strategies, and therefore it is simple. If U, accepts T, then,
cutting the accepting run at the point, where it goes through
state i+1, we get an accepting run of automaton B, on T': the
cut parts guarantee that the dead-ends i+1 are allowed.

On the other hand, if B, has an accepting run on T, then,
“gluing” at the dead-ends i+1, which occur in this run, the
accepting runs of automaton WU, (they exist because the

t+1

dead-ends i+1 are allowed), we get a run of U,on T.

Proof of Lemma 4. This lemma is more complicated because of
its connection with strategies. To clarify its formulation and
understand its analogy with Lemma 3, let wus introduce the
following terminology. Let wus say that an automaton
quasi-accepts a tree, if there is no rejecting strategy for this
automaton on this tree (strategy based on the corresponding set
described in the lemma). Then Lemma 4 can be reformulated as

follows:
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Automaton U, quasi-accepts tree T if and only if automaton %,
quasi-accepts tree T", which 1s obtained by taking T and
inserting the dead-end i+!1 into the vertices which are roots of
subtrees quasi-accepted by U, ;.

Hence, suppose that there exists a rejecting strategy on
tree T" based on M, for automaton %B,. All we need is to
construct a rejecting strategy based on M’ for U, on T. As first
step, we have to divide into left and right the same
copy-transitions as in the strategy for B, (here, the definition
of action of a transition on a copy in M, is wused). In the
following step we select the same copies as in the strategy for
B, except for one case: it is possible that the dead-end i+1 has
been selected for the strategy for B,, we then select (the
initial copy in M, , of) state i+1. But as the dead-end has been

selected, this means that it 1s not allowed, in other words,

there is a rejecting strategy for ¥  , based on M on the

1 1

subtree, the root of which is in the wvertex labelled by this
dead-end. Thus this strategy divides the copy-transitions having
at the bottom the initial copy of i+1. Therefore, we can go on
with the construction of the strategy for U : the
copy-transitions at the bottom of which there is a copy of a
state different from i+1, will be divided into left and right
copies as in the strategy for B,, and the copy-transitions, at
the bottom of which there 1s the initial copy of i+1, wi1ll be

divided by following the existing strategies for U In the

i+l
following steps, we can proceed in a similar way and get a

strategy for U,.
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However, in the previous analysis, there 1is an important

point we have not discussed. Indeed, the selected copies could

have been selected for different reasons: following a
B,-strategy and at the same time following an U, ,-strategy, or
even several U,  -strategies! The picture represents one of
these situations: circles contain selected copies, full lines
represent transitions due to B -strategy, dotted lines represent
transitions due to U, ,-strategy. In the left top circle, we see
a copy A which has been selected for three reasons. One
selection has been done according to 8 -strategy, the second
according to U, , starting at C, and the third according to
U,, ;-strategy starting at E. Copy B has been selected for two
reasons: one selection has been made following ®8,-strategy and
another following ¥, ,-strategy starting at E. What should be
done in such cases? Which strategy should we follow? Answer: if
possible, follow U,  -strategies and, among them, the strategy
coming into effect as early as possible. This leads te the goal,
namely, the rejecting strategy for Y . Indeed, the condition for
dead-ends is satisfied. Let us verify the condition for paths.

Take an arbitrary one. Either it 1is out of range of
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U;, -strategy (then the limit is not final since B -strategy 1s
rejecting), or, if not, it never leaves this range (because we
prefer Y, ,-strategies). It may only happen that it comes 1into
the range of another, earlier WU,  ,-strategy. But this is
possible only a finite number of times. Hence, beginning at a
certain point, the path lies entirely in the range of one
U,,,-strategy and its limit is not final.

We have proved one implication of Lemma 4. The opposite
immplication is much simpler. Let us have a rejecting strategy
for ¥, on T. Consider those selected copies of state i+!1, which
have been selected as the first ones (this means that on the
paths they lie on there are no other copies of i+1 before them).
These copies are initial in M, , (by the rules of application of
transitions to the copies in M). Therefore, subtrees with roots
in the vertices labelled by these copies have a rejecting

strategy for U, , (based on M'). Hence, by considering these

1
copies as dead-ends, we get a rejecting strategy for %, on T
based on M, .

The proofs of Lemma 3 and 4 are complete. In the following
section, we shall use in fact only that part of Lemma 3 which
has been proved as second and that part of Lemma 4 which has

been proved as first. The converse implications were included

just to make the statements complete.

Last part of the induction step
What is the outcome of the Lemmas proved in the previous
paragraph? Knowing that tree T" of Lemma 3 coincides with tree

T" of Lemma 4, we can use the induction assumption for automaton



-262~

B, and get what we need - the existence of an accepting run of

U, on T would be equivalent to the fact that there is no
rejecting strategy for U, on T. However, the assertion T'=T"
states that the existence of an accepting run for U,  , is
equivalent to the fact there being no rejecting strategy for

U

the proved Lemmas are of some value.

.., Which has the same number of states as U,/ Nevertheless,
We shall consider two cases: in the first, we shall assume
that the set S of all states is final, in the second, that it is
not. In the first case, we shall apply Lemma 4 and use the same
ideas as when proving Lemma 3. In the second, Lemma 3 and ideas
of the proof of Lemma 4 will be used.

First case. The set of all states is final. Let wus prove
that if there is no rejecting strategy on T for U,, then there
is an accepting run for U;. As there is no rejecting strategy on
T for Uy, there is an accepting run on T" (constructed in
Lemma 4) for B, (remember that for B,, by induction assumption,
the existence of a run is equivalent to the non-existence of a
strategy). For what reason is this not a run for %U,? In sonme
places, it comes to dead-ends 1 allowed in T". Subtrees with
roots in these vertices do not have any rejecting strategy for

U,, hence, even without having an accepting run for U, (which

1° 1
would permit us to use directly Lemma 3), they have at least a
run for B,, which will be accepting if we add at certain places
dead-and 2. But in those places it 1s possible to start the run
of B, and so on. We get a run for U, by "gluing" all these runs
together. It will be accepting: any path either lies in a run of

some of the B,’s? (from a certain point) - (and has therefore a
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final limit) - or it describes a circle, going infinitely many
times from B, to B,, from B, to B,,..., from B to B,, its limit
being equal to the set of all states, which is final by
assumption. So much for the first case.

Second case. The set of all states is not final. This case
is more complicated; at this point we shall use the structure of
the strategy set M we have constructed. Let us prove, supposing
that there is no accepting run, the existence of a rejecting
strategy. Hence, let us suppose there is no accepting run on
tree T for automaton U,. By Lemma 3, as there is no accepting
run for By on T', which was obtained from T by adding in some
vertices dead-end 1 there is a rejecting strategy for 8,. What
does it lack in order to be an U -strategy? It contains at
several places possible dead-ends 1. When constructing
U,-strategy, at the same places there appear possible copies of
state 1 (initial copies in M,). What should be done with them?
The subtrees with root in the vertices labelled by these copies
do not have any accepting run for U,. We do not know whether
there is a rejecting strategy on these subtrees, (which would
allow us to use Lemma 4). As there is no accepting run, we can
once more apply Lemma 3 and state that by adding dead-end 2, we
get trees without accepting runs for B, on it and hence (by the
induction assumption) with a rejecting strategy for B,. Using
these rejecting strategies, 1t is possible to go on with the
construction of U;-strategy. Note that, until now, we have not
met any problematical case (similar to those which were
discussed in the proof of Lemma 4), because the B, -strategy

deals with copies from Mj and B, -strategy deals with copies from
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M,. Going on with this procedure, we put strategies for
B,,...,8
at the places in which the strategy for 8, has possible

. into action. The strategy for B, , comes into action
dead-ends k+1: in these places, there is no accepting run for
U,,,- At a certain moment, the circle is completed and it is
necessary to use the B, -strategy, and so on. Now, the question
can arise about the choice between the different strategies for
B,. The answer is - the one which is put into action earlier. We
shall verify whether we indeed get a rejecting strategy for U.
The condition with dead-ends is obviously satisfied. Let us
verify the condition for paths. Every probable path is of one of
the two following kinds: either the path, starting from a
certain point, goes through the copies of only one strategy set
M,, or goes infinitely many times from the strategy sets Mj to
the following ones, MJ+1. In the first case, the path, beginning
at a certain place, follows the strategy for B ; to switch from
one strategy to another is possible only if the second one
started earlier. Therefore, such switches are possible only
finitely many times and the path almost everywhere coincides
with the probable path of the strategy for 8. and its limit is
not final. In the second case, the path passing from MJ to MJ+|,
goes through the initial copy of MJ and therefore its limit is
the set of all states, which is (by assumption) not final.

So, the case when the set of all states is not final, is

finished and the inductive proof of Theorem 4° is  hence

completed. Thus we have proved the above formulated Theorem 4.
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Final stage of the proof of the complementation theorem

Corresponding to the announced plan, it remains to prove
the following statement.

(without any dead-end!), M a strategy set. Then the set of all
I-trees on which there exists rejecting strategy for U based on
M is recognizadble.

To prove this statement, introduce the notion of a
semiautomaton on Z-trees. A semiautomaton is given by a set of
inner states S, a table of transitions, a set of initial states
(until now, everything listed has been the same as in the case
of the usual automata on Z-trees) and moreover, a certain
automaton B on o-words in the alphabet S. A run is defined 1n
the same manner as in the case of usual automata. It 1is called
accepting if all paths, regarded as sequences of states (i.e.
elements of S) are rejected by B. The sets of trees accepted by
semiautomata will be called (temporary) semirecognizable. It 18
clear that any recognizable set 1is semirecognizable. The
following Lemma states that the converse implication is also
true.

Proof. It is known (see [4]) that every (nondeterministic)
automaton on e-words is equivalent to some deterministic one.
Hence, the automaton B, belonging to the given semiautomaton U,
can be considered as deterministic. Then, it is not difficult to
construct an automaton which will be equivalent to the

semiautomaton U. Its set of states has to be the product of the
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sets of states of U and B; its run is in fact constructed from a
run of Y and the runs of B on e-words (letters are the states of
U) which lie in the chosen run of along all paths.

Now it remains to prove that the set of all trees, on which
there exists a rejecting strategy for U based on M is
semirecognizable. But this is quite clear: it is not difficult
to formulate the notion of strategy itself in the form of an
accepting run of a semiautomaton. The different possibilities of
dividing copy-transitions to left and right ones correspond to
the possibilities of continuing the run in different ways. It is
possible to consider the states of the semiautomaton as pairs of
disjoint sets of copy transitions (the members of the pair
correspond to the sets of left and right copy-transitions).
Automaton B will look for the paths which do not satisfy the
definition of a strategy (i.e. the paths with final limits) and
hence, the acceptance by automaton B of the sequences of states
lying along all paths will indeed wmean that the strategy is
rejecting.

In this way, we have proved Theorem 4 and hence we have
proved that the complement of a recognizable set is

recognizable.
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