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Abstract

In Section 1 of present paper we construct a formula ’n(A) of Presburger arithmetic (integers
with addition and order) with additional n-ary predicate variable A. This formula is true if and
only if predicate A is de nable in Presburger arithmetic (Theorem 2).
This formula is used to prove the following facts: (1) given a  nite synchronous automaton

recognizing a set of n-tuples of integers written in positional notation one can e2ectively decide
whether this set is de nable in Presburger arithmetic; (2) every predicate (set of n-tuples of
integers) recognizable in two essentially di2erent positional systems is de nable in Presburger
arithmetic. The last result was proved by Cobham (Math. Systems Theory, 3(2) (1969) 186) for
the case n=1. In general case both (1) and (2) were proved by Semenov (Ph.D. Thesis, Moscow
State University; Siberian Math. J. 18(2) (1977) 403) (Semenov’s proofs are very di:cult).
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0. Background1

The present work appeared while author was reading Semenov’s thesis [9]. Us-
ing induction over n, Semenov constructs an algorithm that for a given recognizable
set of n-tuples of integers decides whether this set is de nable by a formula of Pres-
burger arithmetic. The case n=1 is very simple: One-dimensional set is de nable if and

∗ Fax: +7-0959156963.
E-mail address: amuchnik@int.glas.apc.org (A.A. Muchnik).
1This paper is a translation of preprint [8] published 10 years ago. Since then several articles that apply

logical approach to automata theory appeared, see [2,4,6,7].
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only if it is ultimately periodic. This property can be expressed directly in Presburger
arithmetic. Then we use the e2ective closeness of the family of recognizable sets
under Presburger operations. A similar argument works for every n, but we need to
use Theorem 2 below.
At  rst sight Theorem 2 is not plausible: Even two-dimensional Presburger-de nable

sets may have subsets with di2erent periods that cannot be reduced to one period (as
in one-dimensional case).
The property of self-de nability (“to have a de nable criterion for de nability”) is

rather interesting. If we add to a self-de nable structure new predicates such that the
theory of the new structure is decidable then given a formula of the new structure
one can e2ectively decide whether this formula is equivalent to some formula of the
old structure. Unfortunately, we do not know any other examples of nice self-de nable
structures.
Structures with unsolvable elementary theory are usually mutually interpretable with

the arithmetic of addition and multiplication of integers, the non-self-de nability of
which is proved in [1,11] (using category and measure arguments, respectively).
We believe that the structure formed by algebraic real numbers (with addition and

multiplication) is not self-de nable; however, a formal proof is missing (and seems to
be rather complicated).
(Note that it is easy to prove that the structure formed by all real numbers with

addition and multiplication is not self-de nable. Indeed, let us assume that ’1(A) is
true if and only if A is de nable. Now we replace A(x) by x=y. The new formula
’′(y) is true if and only if y is algebraic. But we can eliminate quanti ers in ’′(y)
and get a  nite union of segments. So we come to a contradiction.)

1. The de�nable criterion of de�nability

Let A⊆Zn be some set of n-tuples of integers. We say that a vector v∈Zn is A’s
period if x∈A⇔ x+ v∈A for every x∈Zn. Let W ⊆Zn. We say that v is a period of
set A in W , if the equivalence

x ∈ A ⇔ x + v ∈ A

holds when x∈W and x+ v∈W (two points in W that di2er by v either both belong
to A or both do not belong to A). Note that if v is a period of A in W , then −v is
also a period of A in W .

Presburger arithmetic is the elementary theory of integers with addition and order.
The length |x| of vector x is the sum of modules of its components.
Let A⊆Zn. We will call a section of A any set of the form

Ai;l = {〈x1; : : : ; xi−1; xi+1; : : : ; xn〉|〈x1; : : : ; xi−1; l; xi+1; : : : ; xn〉 ∈ A};

where i∈{1; : : : ; n}; l∈Z. The set Ai; l is called the (i; l)-section of A.
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Theorem 1. A set A⊆Zn is de1nable in Presburger arithmetic if and only if all its
sections are de1nable and there exists a 1nite set V ⊂Zn of non-zero vectors (called
“possible periods”) with the following property:

(∗)
for every k there exists l such that for every point x∈Zn with
|x|¿l the set A is periodic in the k-neighborhood of point x with
some period that belongs to V:

Proof. I. Let us prove that every de nable set has property (∗) (the de nability of
sections of a de nable set is obvious). Using quanti ers’ elimination, we may assume
that formula  (x1 : : : xn) which de nes A is a Boolean combination of expressions of
types

ti(x1 : : : xn) = ci modm

and

ui(x1 : : : xn)¿ di;

where ti(x1 : : : xn); ui(x1 : : : xn) are linear combinations of variables x1 : : : xn with integer
coe:cients and m; ci; di are constants.

Hyperplanes ui(x1 : : : xn)=di divide Zn into several regions. Periodicity is obvious
within each region:  is reduced to statements about divisibility only, and every variable
can be increased or decreased by m.
The problem arises when point x is close to some hyperplane (k-neighborhood of the

hyperplane contains x). Let us consider the set of all hyperplanes (of the form consid-
ered above) that intersect k-neighborhood of some point x. There are two possibilities.
If this set of hyperplanes has the full rank (normals to hyperplanes generate Qn) then
the intersection of k-neighborhoods of hyperplanes is bounded, so this possibility can
be ignored for points x with large |x|. If not, then there exists a vector (with integer
coordinates) that is parallel to all those hyperplanes. Multiplying this vector by m, we
get one of the periods.
Now let us continue with a more formal account.

(1) Every inequality ui(x1 : : : xn)¿di has form ui1x1 + · · · + uinxn¿di. We denote the
integer vector 〈ui1; : : : ; uin〉 by ui and call ui the ith normal vector (because ui is
orthogonal to hyperplane (ui; x)=di). Here i∈{1; : : : ; s} where s is the number of
inequalities.

(2) Let E be an arbitrary subset of the set {1 : : : s} of indices. Let us say that E is a
set of the 1rst type, if the family of vectors {ui | i∈E} has full rank (generates
Qn). Otherwise we call E a set of the second type.

(3) For every set E of the second type we choose a non-zero integer vector which is
orthogonal to vectors ui for all i∈E. Without loss of generality we may assume
that all components of this vector are multiples of m. These vectors, chosen for
di2erent sets E of the second type, form a set V of possible periods.

(4) Let k be an arbitrary positive integer (the size of neighborhood). Consider an ar-
bitrary set E of indices that belongs to the  rst type. As the family of normal
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vectors has the full rank, the intersection of hyperplanes corresponding to E has
at most one point. The k-neighborhood of a hyperplane is a  nite union of par-
allel hyperplanes, therefore for every E the intersection of k-neighborhoods of all
E-hyperplanes is  nite. The union of such intersections for all sets E of  rst type
is also  nite, and we take as l the maximal length of its elements.

(5) Let |x|¿l. Let us consider all hyperplanes that intersect the k-neighborhood of
the point x; let E be the set of their indices. This set belongs to the second type
(because of the choice of l). So there exists some vector v∈V parallel to all these
hyperplanes. As v∈V , all its components are multiples of m. And v is a period
(all hyperplanes that do not belong to E do not intersect the neighborhood).

II. Let us prove now that if the property (∗) is ful lled for some  nite set V
(in this case we say that set A is V -periodic) and all sections of A are de nable, then
A is de nable. To prove this assertion we use induction on cardinality of the set V .
(We identify v and −v and count them as one element of V since the de nition of
period is symmetric.)

Induction base: Let V = {v}; v= 〈v1; : : : ; vn〉. As v 
=0, we may assume that v1¿0.
Let l¿0 be so large that for |x|¿l, vector v is a period of A in |v|-neighborhood of x.
Obviously, this implies that v is a period of A in the set {x∈Zn | |x|¿l}. Consider the
sections A1; l; A1; l+1; : : : ; A1; l+v1−1 (the  rst coordinate is  xed as l; l+1; : : : ; l+ v1 − 1,
respectively). They de ne all the sections A1; s of the set A with s¿l+ v1 − 1 because
of periodicity. More precisely, if

A′ = {〈x1 : : : xn〉 ∈ A | l6 x1 ¡ l+ v1};

then for a vector x= 〈x1 : : : xn〉 with x1¿l the property x∈A can be expressed in
the equivalent form: “there exist y= 〈y1 : : : yn〉 ∈A′ and q∈Z such that x1¿y1; x1 −
y1 = v1q; x2−y2 = v2q; : : : ; xn−yn = vnq”. As A′ is de nable (it consists of  nite number
of de nable sections), the part A∗ of set A which consists of vectors x= 〈x1 : : : xn〉 with
x1¿l is also de nable. The part A∗∗ of set A which consists of vectors x= 〈x1; : : : ; xn〉
with x1¡−l is also de nable for similar reasons. The set A\(A∗ ∪A∗∗) consists of
 nite number of de nable sections, therefore A is de nable. The base of induction is
proved.

Induction step: We start with the following de nition: Let A⊆Zn be a set and v∈Z
be a vector. By the boundary Bd(A; v) of the set A in the direction v we mean the set
{x∈A | x + v =∈A}. We will prove the following facts for any set A⊆Zn and for any
non-zero vector v∈Zn.

Lemma 1.0. If all sections of a set A are de1nable, then all sections of Bd(A; v) are
de1nable.

Lemma 1.1. If A is V-periodic, v∈V and V consists of v and −v, then the set
Bd(A; v) is V\{v;−v}-periodic.

Lemma 1.2. A is de1nable in terms of Bd(A; v); Bd(A;−v) and a 1nite number of
sections of set A.
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(This means that A can be de ned by a formula that uses addition, order and unary
predicates for sets Bd(A; v); Bd(A;−v) and for  nite number of sections of A.)
Lemmas 1.0–1.2 enable us to make the step of induction. It remains to prove them.

Proof of Lemma 1.0. The (i; l)-section of Bd(A; v) is easily de nable in terms of (i; l)-
section and (i; l+ vi)-section of A.

Proof of Lemma 1.1. We have to prove that the set Bd(A; v) is V\{v;−v}-periodic.
Let k be an arbitrary size of a neighborhood.
Since A is V -periodic, one can  nd l such that in k + |v|-neighborhood of every

point x with |x|¿l the set A has a period w which belongs to V . If w= v (or w= −v),
the set Bd(A; v) is empty in the k-neighborhood of point x (and is periodic with any
period). If w 
=± v, then in k-neighborhood of x the set Bd(A; v) is also periodic with
period w. Lemma 1.1 is proved.

Proof of Lemma 1.2. Let x be an arbitrary point of A. We denote the point x + iv
by ui (so that u0 = x; u1 = x + v; u−1 = x − v and so on). There are four (mutually
exclusive) possibilities:
(1) for some s and some t (s606t) all points us; : : : ; ut belong to A and us ∈

Bd(A;−v); ut ∈Bd(A; v);
(2) for some s60 all points us; us+1 : : : belong to A and us ∈Bd(A;−v);
(3) for some t¿0 all points : : : ; ut−1; ut belong to A and ut ∈Bd(A; v);
(4) the points ui belong to A for every i.
Thus, the set A is divided into four disjoint parts A1; A2; A3; A4 and it is enough to

prove that all of them are de nable (in terms of Bd(A; v);Bd(A;−v) and sections of
the set A).
Parts A1; A2; A3 are de nable in terms of Bd(A; v) and Bd(A;−v). Indeed, the state-

ment “x∈A1” can be expressed as “there are points y∈Bd(A;−v) and z ∈Bd(A; v),
for which z− x and x− y are positive multiples of v (i.e. z− x=pv; x− y= qv with
p; q∈N) and every point w between y and z such that y−w (and z−w) are multiples
of v, does not belong to Bd(A; v) and Bd(A;−v)”. Properties x∈A2 and x∈A3 can be
expressed in a similar way.
However, the property “x∈A4” is not equivalent to the property “all the points that

di2er from x by a multiple of v do not belong to Bd(A; v) and Bd(A;−v)”, because
the latter property is true also for points x such that all the points ui = x + iv do not
belong to A. To distinguish between these two possibilities, we have to use sections
of A (as we did while proving induction base). Lemma 1.2 is proved.

Theorem 1 is proved.

Theorem 2. There exists a formula ’n(A) of Presburger arithmetic with additional
n-ary predicate symbol A which is true if and only if predicate A is de1nable in
Presburger arithmetic (without additional predicates).

Proof. The phrase “there exists a  nite set V ” used in the criterion of de nability
(Theorem 1) cannot be expressed directly. But the property of V used in the criterion
remains true if V is replaced by a bigger set.
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Therefore, we may assume w.l.o.g that V is d-neighborhood of zero (the set of
all vectors whose length does not exceed d) for some d. Then property (∗) becomes
de nable by a formula. An induction over n now completes the proof of Theorem 2
(we use that for sections of A the property “to be de nable” is de nable).

Theorem 3. Let M be a 1nite automaton whose input is n-tuple of natural num-
bers written in positional system (all numbers have the same base and are aligned;
M reads n least signi1cant digits at the 1rst step). One can e6ectively decide whether
the set recognized by M is de1nable in Presburger arithmetic.

Proof. Let A be a (n-ary) predicate recognizable by M . Consider formula ’n(A) from
Theorem 2. Ternary predicate x + y= z and binary predicate x6y (on N) are rec-
ognizable by  nite automata. The family of recognizable sets is closed under logical
operations (complementation, uni cation, projection and cylindri cation). Therefore,
we can construct an automaton that corresponds to ’n(A); it recognizes empty set if
’n(A) is false and the set of all strings if ’n(A) is true. We can distinguish e2ectively
between these two cases, so Theorem 3 is proved.

Analyzing the proof of Theorem 1, we see that in fact a stronger result was proved:
in the if-part of Theorem 1 the property (∗) can be replaced with the following one:

(∗∗)
the set A is periodic in every far enough neighborhood of radius k
(where k is the sum of lengths of all vectors from V ) with a period
from V

(i.e. it is su:cient to consider only one value of k, namely, the sum of lengths of
vectors from V ).
Indeed: (1) in the proof of the base of induction (V = {v}) it is enough to have

periodicity in neighborhood of radius |v|, (2) if the set A is periodic in neighborhood of
radius k with periods from V then the set Bd(A; v) is V\{v}-periodic in neighborhood
of radius k − |v|, and thus property (∗∗) remains true for Bd(A; v).
These arguments prove the following

Theorem 4. If all sections of a set A⊆Zn are de1nable and there exists a 1nite set
V ⊂Zn of non-zero vectors such that property (∗∗) is ful1lled, then A is de1nable in
Presburger arithmetic.

This theorem will be used in the next section to prove the Cobham–Semenov’s result
as mentioned in the introduction.

2. De�nability of sets recognizable in positional systems with two bases

In this section, we use the criterion of de nability provided by Theorem 4 to prove
that any predicate P recognizable by  nite automata in two positional systems with
bases p and q (where ln q= lnp is irrational) is de nable in Presburger arithmetic.



A.A. Muchnik / Theoretical Computer Science 290 (2003) 1433–1444 1439

Let P(x1 : : : xn) be a n-ary predicate on N. Assume that x1; : : : ; xn are written in
positional system with base p: xi =

∑m
j=0 xijp

j, and xim 
=0 for some i. We form an
input string for an automaton by combining digits x1j : : : xnj into one input symbol. In
this way, any tuple 〈x1 : : : xn〉 is represented by a string in an alphabet whose letters
are columns of height n containing digits 0 : : : p−1. (The most signi cant letter di2ers
from the zero column). Let us consider for every n-ary predicate P and for every
base p the set of strings that correspond to all n-tuples satisfying P. If this set is
recognizable, we say that P a is recognizable predicate in p-based system.
It is well known that every predicate de nable in Presburger arithmetic is recogniz-

able in p-based system for any p. On the other hand, the set of powers of p, which
is recognizable in p-system, is not de nable. It is easy to show that if p and q are
powers of the same number (this condition is equivalent to ln q= lnp∈Q), recognizable
predicates are the same for bases p and q [3].

Theorem 5. If a predicate P(x1 : : : xn) is recognizable in both p-based and q-based
systems and ln q= lnp is irrational then predicate P is de1nable in Presburger arith-
metic.

Proof. Consider “mixed” (p; q)-based system that uses digits 0 : : : p−1 with subscript
p as well as digits 0 : : : q− 1 with subscript q. If digits of only one type are used, we
get p-based or q-based system. In general case, the value of the string that includes
both types of digits is de ned as follows: if string s represents number x, the string
sip represents px + i and string sjq represents qx + j. As an example,

1828710 = 1828 × 10 + 7 = (18 × 8 + 2)× 10 + 7 = 107 = 11031038:

The (p; q)-based system can be used to represent n-tuples of natural numbers in the
same way as it was done for one base. An additional requirement is needed: every
column must contain digits of the same type (only p-digits or only q-digits). We come
to the following:

De�nition. A predicate P is (p; q)-recognizable if the set of all strings that represent (in
(p; q)-based system) n-tuples for which P is true, is recognizable by a  nite automaton.

It is clear that every (p; q)-recognizable predicate is recognizable in both systems
(with bases p and q). It turns out that the converse assertion is also true.

Lemma 5.1. If predicate P is recognizable in p-based and q-based systems then P is
(p; q)-recognizable.

Proof. We start with some observations. Consider a string that contains k digits with
base p and l digits with base q. This string may represent any number between 0
and pkql − 1. If we  x the places for p-digits and q-digits then this representation is
unique.
Let S be a (p; q)-based representation of a number x, and T be a substring of S

that (p; q)-represents some number y. Consider another string T ′ that represents the
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same number y and has the same number of p- and q-digits as T . It is easy to see
that string S ′ that is obtained from S by replacement T → T ′, represents x. (It must
be stressed that it is not enough for T ′ to have the same length as T . It is important
that numbers of p- and q-digits in T and T ′ are the same: a string of k p-digits and
l q-digits gives factor pkql for digits that precede it.)
Let us use the following criterion of recognizability. Let M be a set of strings in

a  xed alphabet. De ne the relation “strings S and T are k-equivalent with respect
to M” as follows: SR∈M ⇔TR∈M for all strings R of length at most k. It is well
known that a set M is recognizable if and only if the relations of k-equivalence with
respect to M coincide for all su:ciently large values of k. (We may assume without
loss of generality that S and T are non-empty.)
We know that predicate P is recognizable in p-based system. Consider the set of

strings that corresponds to P is p-based system. This set is recognizable by a  nite
automaton. We use the criterion above and let kp be the  rst number such that for
all k¿kp the relations of k-equivalence are the same. A similar number for q-based
system is denoted by kq.
Let us prove that for (p; q)-based system, relations of k-equivalence for all k¿kp+kq

are the same.
Consider an alphabet whose letters are columns of p-digits and columns of q-digits

(of height n). Strings over this alphabet (p; q)-represent n-tuples of natural numbers.
We write Z ∈P for a string Z over this alphabet if Z represents a n-tuple of integers
for which P is true. It is enough to show that if SX ∈P; T X =∈P for some strings
S; T; X (where S and T are non-empty strings) and length of X exceeds kp+ kq, then
there exists a string Y shorter than X such that SY ∈P and T Y =∈P.
If string T starts at the 0th column, then we can use an empty string Y . If not,

let us count p- and q- columns in X . As the length of X exceeds kp + kq, either the
number of p-columns exceeds kp, or the number of q-columns exceeds kq. Assume, for
example, that the number of p-columns exceeds kp. Consider a string X ′ that has the
same length and the same value as X , but all the p-columns in X ′ are moved to the
right (the number of p-columns remains the same). Then X ′=VW where V consists
of q-columns and W consists of p-columns. Strings SX and SX ′ represent the same
tuple of integers (as well as TX and TX ′). Thus, SX ′ ∈P; T X ′ =∈P. This means that
SVW ∈P; TVW =∈P. The string SV is (p; q)-representation of some tuple; let SV be
a p-representation of this tuple. String TV is (p; q)-representation of another tuple; let
TV be p-representation of this tuple. The string SVW is p-based representation of the
same tuple as SVW , therefore, SVW ∈P. In a similar way TVW =∈P. Since the length
of W is greater than kp, one can  nd a shorter string W ′ consisting of p-columns for
which SVW ′ ∈P; TVW ′ =∈P (by de nition of kp). Then, SVW ′ ∈P; TVW ′ =∈P. This
means that there exists a string Y (namely, Y =VW ′) which is shorter than X and for
which SY ∈P; T Y =∈P. Lemma 5.1 is proved.

Let us now go on with the proof of Theorem 5. Lemma 5.1 shows that the predicate
P is (p; q)-recognizable. We show that conditions of Theorem 4 are ful lled and
therefore P is de nable.
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We start with a proof sketch. For a su:ciently long vector 〈x1 : : : xn〉 we have to
prove that the predicate P is periodic in the neighborhood of x (and the period is not
very large).
At  rst we use only base p. For simplicity, we assume that P is an unary predicate

(a set of natural numbers). Let us  x some number k and divide the set of natural
numbers into segments of length pk (the numbers in one segment have the same digits
except for the last k digits). For each segment we consider a bit string of length pk

that is a restriction of P to this segment.
By our assumption P is recognizable (we assume here that input string is read

starting from most signi cant digits), and the number of di2erent bit strings of length
pk that are restrictions of P does not exceed the number of states. (Indeed, the state
of automaton before it starts to read last k digits determines P’s restriction on the
corresponding segment.)
Now the question of periodicity is divided in two parts: (1) what happens if the

neighborhood in question intersects the boundary between segments and (2) what hap-
pens if neighborhood is contained entirely inside one of the segment.
We reduce the  rst case to the second one using the following trick: consider the

predicate P(x) together with the predicate P′(x)=P(x + c), where c is close to pk=2.
Predicate P′ is also recognizable, and boundaries between P-segments correspond to
midpoints of P′-segments.
For neighborhoods within segments we have to consider all possible restrictions of

P (they correspond to di2erent states of the automaton).
Recall that P is (p; q)-recognizable, so we can use p- and q-digits together. It is

important for us that given number has many (p; q)-representations.
There are two methods that allow us to change a string x formed by p- and q-digits

without changing the truth value of statement x∈P:
(1) we can replace x by another (p; q)-representation of the same integer;
(2) we can replace x by another string that puts automaton into the same state.
By our assumption ln q= lnp is irrational. Therefore, we can  nd large natural num-

bers k and l such that k lnp− l ln q is close to zero. Since k lnp− l ln q= ln(pk=ql),
this means that pk=ql is close to 1 and the di2erence pk − ql is small compared to pk

or ql.
Before going on, let us consider an example. Let p=10; q=2; then 103 = 1000≈

1024=210. Let abcde be a  ve-digit decimal number. Then cde is a natural number
from 0 to 999; it can be written in binary as v9v8 · · · v0 (here vi ∈{0; 1}). Consider now
the (10; 2)-representation a10b10v92v

8
2 · · · v02. How much does the corresponding num-

ber di2er from abcde? It is easy to see that it exceeds abcde by 24ab. For number
a10b10v92v

8
2 : : : v

0
2 to be equal to abcde we need v92v

8
2 : : : v

0
2 to be a binary representation

of cde − 24ab (this is possible only if cde is not too close to zero).
Now we return to our proof sketch. As we have said, the set of natural numbers is

partitioned into segments of length pk . We assume that pk ≈ ql. we study the restriction
of P onto one segment. This restriction is determined by the state of the automaton
before reading last k digits. Let us assume that two di2erent pre xes x and y put the
automaton into the same state. Let us prove that corresponding restriction of P has
period (pk − ql) (Ox − Oy) (where Ox and Oy are values of strings x and y in (p; q)-
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based system). Indeed, let s be some k-digit string formed by p-digits. Let s1 be the
q-based representation of the number Os + Ox(pk − ql) that contains l digits. Then, xs1
and xs represent the same number: Ox · ql + Os1 = Ox ·pk + Os. Thus, xs∈P⇔ xs1 ∈P. And
xs1 ∈P⇔ys1 ∈P because strings x and y put the automaton in the same state.
Now consider the string s2 which is the k-digit p-based representation of number

Os1+ Oy(ql−pk). Then, ys2 and ys1 are the representations of the same number, therefore
ys1 ∈P⇔ys2 ∈P. Because ys2 ∈P⇔ xs2 ∈P we  nally get that xs∈P⇔ xs2 ∈P. As

xs2 − xs = Os2 − Os = Oy(ql − pk) + Ox(pk − ql) = ( Ox − Oy)(pk − ql);

the periodicity is proved. (This argument works if s is not too close to endpoints of
the segment and x; y are not too big.)
This sketch of the proof should be  lled with details. First of all we have to ex-

plain how to get two di2erent pre xes x and y that put the automaton into the same
state. Let us formulate corresponding statement for n-dimensional case. We assume
that automaton recognizes P in (p; q)-based system. (The automaton’s input is a string
formed by columns of p-digits and q-digits of height n.) We call a string reduced if
its  rst symbol is not a zero column.

Lemma 5.2. Let j be the number of states of the automaton. Then for every reduced
string x of length greater than j there exists another reduced string x′ that puts
automaton into the same state as x.

Proof. Consider all the states that are passed while reading all non-empty pre xes
of x. Some state appears twice. Throwing away the part between two instances of that
state, we do not change the  nal state and the  rst symbol of x. Lemma 5.2 is proved.

According to Lemma 5.2, all states are divided into two classes. The states of the
 rst class appear only after reading reduced strings of length j or less. Those states can
be neglected, as the criterion of de nability deals only with points that are far enough
from the origin. For every state of the second class there exists a pair of di2erent
reduced strings that put the automaton in this state. Those pairs of strings are used in
the proof of the periodicity.
The proof of periodicity can be easily generalized to n-dimensional case. In that

case Nn is partitioned into n-dimensional cubic cells with side pk . Each cell consists
of vectors which di2er only in k last p-digits. These cells are divided into classes that
correspond to di2erent states of the automaton that recognizes P.

Lemma 5.3. Let x and y be two strings that put the automaton into the same state.
Consider the set of all points in the cell corresponding to this state that are at a
distance at least | Ox + Oy| · |pk − ql| from cell boundaries. On this set predicate P is
periodic with period ( Ox − Oy)(pk − ql).

Proof of Lemma 5.3. Repeats the above arguments.
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For this lemma to be non-trivial, | Ox+ Oy| · |pk−ql| must be small compared to pk and
ql, i.e. |pk − ql|=pk must be much less than 1=| Ox+ Oy|. It can be done, as |pk − ql|=pk

can be arbitrary small and | Ox + Oy| is bounded by a constant that does not depend on
k and is determined by the automaton. Thus, the inner part of the cell mentioned in
Lemma 5.3 can be made large enough to contain 99% of the cell volume.
Also the sum of lengths of all vectors from the set of periods must be less than

the size of periodic neighborhood (see the statement of Theorem 4). The number of
periods is bounded by the number of states of the automaton and the length of any
period is bounded by |pk −ql| (up to a constant factor). Thus, the sum of lengths does
not exceed c|pk − ql| for some constant c. Hence, we can choose k and l in such a
way that the sum of periods is ¡1% of the cell edge.
The only remaining problem is the behavior of P near the cell boundaries. As we

have said, we solve this problem by shifting our predicate. It remains recognizable;
however, the number of states can increase and all our constants will change (because
the shift distance depends on k).
To avoid this di:culty we apply the following trick. Instead of predicate P(x1 : : : xn),

let us consider the predicate Q with doubled arity

Q(u1; z1; : : : ; un; zn) = P(u1 + z1; : : : ; un + zn):

This predicate is also recognizable, and our arguments remain valid for Q. We choose
k and l such that pk ≈ ql and let zi be equal to 0 or �pk=2�. In Lemma 5.3 we consider
only automaton states that can be reached on strings in which all zi are zeros. Then
periods will have zero z-coordinates. Consequently, u-coordinates will form the periods
of initial predicate. Thus, we have 2n of partitions of Nn into cells (corresponding to
di2erent tuples of zi: for every coordinate there exist two possibilities). For every point
in Nn we can  nd a partition for which this point is “deep inside a cell” (i.e. belongs to
the cell together with neighborhood of radius pk=5). Now we can apply the criterion of
de nability. (The only thing that we have not checked is the de nability of sections.
As the sections of a recognizable predicate are recognizable, we can use induction
over n.)
Theorem 5 is proved.

Acknowledgements

Author is grateful to A. Shen for help in writing the draft version of the present
paper.

References

[1] J.W. Addison Jr., The unde nability of the de nable, Notices Amer. Math. Soc. (12) (1965) 347.
[2] A. BQes, Undecidable extensions of BRuchi arithmetic and Cobham–Semenov theorem, J. Symbolic Logic

62 (4) (1997) 1280–1296.
[3] V. BruySere, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. de

la Soc. Math. de Belgique 1 (1994) 191–238.



1444 A.A. Muchnik / Theoretical Computer Science 290 (2003) 1433–1444

[4] J.R. BRuchi, Weak second-order arithmetic and  nite automata, Z. Math. Logik und Grundl. Math. 6 (1)
(1960) 66–92.

[5] A. Cobham, On the base-dependence of sets of numbers recognizable by  nite automata, Math. Systems
Theory 3 (2) (1969) 186–192.

[6] C. Michaux, R. Villemaire, Cobham’s theorem seen through BRuchi’s theorem, Proc. ICALP, Lecture
Notes in Computer Science, Vol. 700, 1993, pp. 325–334.

[7] C. Michaux, R. Villemaire, Presburger arithmetic and recognizability of sets of natural numbers
by automata: new proofs of Cobham’s and Semenov’s theorems, Ann. Pure Appl. Logic 77 (1996)
251–277.

[8] An.A. Muchnik, The de nable criterion for de nability in Presburger arithmetic and its application,
preprint, Institute of New Technologies, Moscow, 1991 (in Russian).

[9] A.L. Semenov, On de nability in some solvable theories, Ph.D. Thesis, Moscow State University, 1975.
[10] A.L. Semenov, Predicates that are regular in two positional systems are de nable in Presburger

arithmetic, Siberian Math. J. 18 (2) (1977) 403–418.
[11] H. Tanaka, Some results in the e2ective descriptive set theory, Publ. Res. Inst. Math. Sci. Kyoto Univ.

Ser. A (3) (1967) 11–52.


	The definable criterion for definability in Presburger arithmetic and its applications
	Background1
	The definable criterion of definability
	Definability of sets recognizable in positional systems with two bases
	Acknowledgements
	References


