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Abstract

A recursive enumerator for a function h is an algorithm f which enu-
merates for an input x finitely many elements including h(x). f is a
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k(n)-enumerator if for every input x of length n, h(x) is among the
first k(n) elements enumerated by f . If there is a k(n)-enumerator
for h then h is called k(n)-enumerable. We also consider enumerators
which are only A-recursive for some oracle A.

We determine exactly how hard it is to enumerate the Kolmogorov
function, which assigns to each string x its Kolmogorov complexity:

• For every underlying universal machine U , there is a constant a
such that C is k(n)-enumerable only if k(n) ≥ n/a for almost
all n.

• For any given constant k, the Kolmogorov function is k-enumer-
able relative to an oracle A if and only if A is at least as hard as
the halting problem.

• There exists an r.e., Turing-incomplete set A such for every non-
decreasing and unbounded recursive function k, the Kolmogorov
function is k(n)-enumerable relative to A.

The last result is obtained by using a relativizable construction for a
nonrecursive set A relative to which the prefix-free Kolmogorov com-
plexity differs only by a constant from the unrelativized prefix-free
Kolmogorov complexity.

Although every 2-enumerator for C is Turing hard for K, we show
that reductions must depend on the specific choice of the 2-enumerator
and there is no bound on the quantity of their queries. We show
our negative results even for strong 2-enumerators as an oracle where
the querying machine for any x gets directly an explicit list of all
hypotheses of the enumerator for this input. The limitations are very
general and we show them for any recursively bounded function g:

• For every Turing reduction M and every non-recursive set B,
there is a strong 2-enumerator f for g such that M does not
Turing reduce B to f .

• For every non-recursive set B, there is a strong 2-enumerator f
for g such that B is not wtt-reducible to f .

Furthermore, we deal with the resource-bounded case and give char-
acterizations for the class Sp

2 introduced by Canetti and independently
Russell and Sundaram and the classes PSPACE, EXP.

• Sp
2 is the class of all sets A for which there is a polynomially

bounded function g such that there is a polynomial time tt-
reduction which reduces A to every strong 2-enumerator for g.

• PSPACE is the class of all sets A for which there is a polyno-
mially bounded function g such that there is a polynomial time
Turing reduction which reduces A to every strong 2-enumerator
for g. Interestingly, g can be taken to be the Kolmogorov func-
tion for the conditional space bounded Kolmogorov complexity.
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• EXP is the class of all sets A for which there is a polynomi-
ally bounded function g and a machine M which witnesses A ∈
PSPACEf for all strong 2-enumerators f for g.

Finally, we show that any strong O(log n)-enumerator for the condi-
tional space bounded Kolmogorov function must be PSPACE-hard if
P = NP.

1 Introduction

The Kolmogorov complexity of a binary string x, C(x), is the size of the
smallest program that outputs x. Kolmogorov complexity has its roots in
the study of randomness: it is one way to measure randomness in a string.
It has had a vast area of applications, including information theory, combi-
natorics, analysis of algorithms, distributed computing, statistical properties
of long finite and of infinite sequences, learning theory, quantum information
processing and complexity theory. Li and Vitányi [23] provide a detailed
discussion of many of these directions.

The Kolmogorov complexity is not computable [11, 19, 29], it is even hard
for every r.e. set. When a set or function is not computable or intractable,
one often turns to the complexity of approximations. For example, would
it be possible to approximate the Kolmogorov function to within reasonable
bounds? Kolmogorov [33] showed that the Kolmogorov complexity function
can be approximated from above: there is a total recursive function C̃ such
that C(x) = min{C̃(t, x) : t = 1, 2, 3, . . .}.

A different approach to approximation is that if one cannot compute the
value of the function exactly, perhaps it would be possible to output several
candidates for the value of the function, one of which is the actual value.
Traditional approximations are a special case of this, in which the set of
candidates is the set of numbers in a given range. This kind of approximation
has been called enumeration complexity, see [1, 2, 4, 6, 8, 9, 15, 22]. Bill
Gasarch suggested the natural question whether we can approximate the
Kolmogorov function in this sense, or more precisely, how many values does
a Turing machine need to output before it is guaranteed that one of the
values is C(x).

By a simple table-lookup argument, C(x) can be (n− a)-enumerable for
every a, where n = |x|. For every constant a there is even a programming
system such that C(x) is n/a-enumerated, see Remark 3.2. However, we
show that for every programming system and enumeration of the resulting C
there is another constant c such that for every length n there is an x ∈ {0, 1}n

for which the enumeration outputs more than n/c many hypotheses.
Next we look at how much extra power a Turing machine needs before
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it can compute an O(1)-enumeration of the Kolmogorov function. We show
that such a machine must be powerful enough to compute the Kolmogorov
function directly. That is, for constant k, the Kolmogorov function is k-enum-
erable relative to an oracle A if and only if the halting problem is Turing-
reducible to A. However we show in Theorem 3.7 that for some very slowly
growing unbounded function k, the Kolmogorov function is k(n)-enumerable
relative to an oracle for an incomplete r.e. set.

The proof of Theorem 3.7 is based on a result which is more than just
a tool. It shows that there are non-recursive oracles A relative to which
the prefix-free Kolmogorov complexity is up to a constant identical with the
non-relativized one. This class of oracles is obviously closed downward under
Turing reduction and it has several other natural characterizations [25].

Then we investigate the computational power provided by an oracle for
a k-enumerator. We show that a single query to a strong 2-enumerator for
the Kolmogorov function allows us to extend a partial recursive function
to a total recursive function. However, even unlimited access to a strong
2-enumerator provides essentially no help in computing sets.

Our results have some nice complexity theoretic counterparts. In Sec-
tion 6, we characterize the class Sp

2 [10, 27] in terms of bounded truth-table
and truth-table reductions to strong 2-enumerators. We show that P =
PSPACE if the polynomial space bounded Kolmogorov function has a poly-
nomial time strong 2-enumerator. This result makes use of the theorem that
the sets in the polynomial hierarchy are Turing reducible to any strong 2-
enumerator for the Kolmogorov function independent of the actual choice
of the enumerator. This contrasts to the recursion theoretic case where no
non-recursive set is Turing reducible to an arbitrary enumerator by a fixed
reduction. Finally we show that every strong O(log n)-enumerator of the
polynomial space bounded Kolmogorov function is hard for PSPACE under
nondeterministic polynomial time reductions.

2 Preliminaries

We assume the reader is familiar with basic notions in computational com-
plexity theory. Fix a universal Turing machine U . Except when explicitly
stated, all our results are independent of the particular choice of the uni-
versal machine. Strings are denoted as lower case letters x, y, u, v, . . . and
are all elements of {0, 1}∗. We use the 1-1 correspondence between strings
and binary numbers and have numbers sometimes appear as arguments to
functions on strings and vice versa. Also we let functions defined on strings
sometimes act on numbers where the length of the number is the logarithm
of its value.
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Definition 2.1 The conditional Kolmogorov complexity function C(x|y), see
[23], is given as C(x|y) = min{|p| : U(p, y) = x} where p stands for a program
and U for a universal machine, that is, for a binary partial-recursive function
satisfying that for every other binary partial-recursive function V there is a
constant c such that whenever V (p, y) is defined then there is a q ∈ {0, 1}∗
with |q| ≤ |p| + c and U(q, y) = V (p, y). We also use a unary version
U(p) as an abbreviation for U(p, λ) and let C(x) = min{|p| : U(p) = x} be
the unconditional Kolmogorov complexity. In most places, we will just work
with the unary U and unconditional complexity C. U and C have recursive
approximations Us and Cs such that

• There is a q such that U0(qx) = x;

• U(p) = x⇔ ∃s (Us(p) = x);

• Cs = min{|p| : Us(p) = x};

• The function s, x→ Cs(x) is total and recursive in both parameters.

The first condition guarantees that not only C(x) ≤ |x|+ c but also, for each
s, Cs(x) ≤ |x|+ c for the constant c = |q|.

Hartmanis [16] defined a time-bounded version of Kolmogorov complexity,
but resource-bounded versions of Kolmogorov complexity date back as far
as 1968 [3], see also [23]. The space bounded version Cspace is used in many
results where Cspace(x|y) is defined as the length of the shortest program p
telling how to compute x from input y with a space bound polynomial in
|p| + |x| + |y|. Note that the polynomial in this bound is in the same way
part of the underlying convention as the choice of the universal machine.

Intuitively, a computable k-enumerator for a function h enumerates on any
input x up to k(|x|) possible values such that h(x) is among these values.
Formal definitions are given below.

Definition 2.2 (k(n)-Enumerable) A recursive k(n)-enumerator f for a
function h is an algorithm which enumerates on input x a finite set, denoted
by f(x), such that

• h(x) is among the enumerated values: h(x) ∈ f(x);

• the cardinality is at most k(n): |f(x)| ≤ k(n) where n is the length
of x.
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If a function h has a recursive k(n)-enumerator f then h is called k(n)-enum-
erable.

If f is a recursive k(n)-enumerator for h and if in addition x→ |f(x)| is
a computable function then f is called a strong k(n)-enumerator for h and h
is said to be strongly k(n)-enumerable.

For an oracle A, an A-recursive enumerator is an enumeration algorithm
using the oracle A; furthermore, a strong A-recursive enumerator is an A-re-
cursive enumerator where the function x→ |f(x)| is also A-recursive. If it is
not important, relative to which oracle A an A-recursive (strong) enumerator
f is computed, then f is just called a (strong) enumerator.

In Section 4, strong enumerators are also used as oracles themselves; the
query protocol is that a query is made at a place x and an explicit list of the
elements of the set f(x) is returned.

If one would query a recursive enumerator as an oracle by the protocol given
above, it might be that one would retrieve information that cannot be com-
puted. In contrast to that, a recursive strong enumerator does not give away
any nonrecursive information. Therefore the above protocol of access to enu-
merators as oracles is indeed more adequate for strong enumerators. So we
consider only strong enumerators as oracles. Friedberg and Rogers [14] in-
troduced the notion of enumeration-reducibility, which is often abbreviated
as e-reducibility. This notion would give an adequate environment to deal
with computations relative to enumerators (and not only strong enumera-
tors). But since most of our results using an enumerator as an oracle are
negative results which even hold for accessing strong enumerators, it would
not pay off to formalize our results within the framework of e-reducibility.
Instead we limit ourselves to querying strong enumerators. In addition we
consider reductions to sets A relative to which an A-recursive enumerator for
C has certain properties (like, for example, being a 2-enumerator).

Remark 2.3 In the following, one denotes by fx
t the t-th element enumer-

ated by f on input x. Thus the following connections hold between enumer-
ators and the partial function x, t→ fx

t :

• For every enumerator f and every x there is a bound bx such that
fx

t is defined iff t ∈ {1, 2, . . . , bx}. Furthermore, f(x) = {fx
t : fx

t is
defined} = {fx

1 , f
x
2 , . . . , f

x
bx
}.

• f is an A-recursive enumerator iff the function x, t → fx
t is a partial

A-recursive function.

• f is a strong A-recursive enumerator iff the function x, t → fx
t is a

partial A-recursive function and has an A-recursive domain.
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If f is a (not necessarily recursive) enumerator for the Kolmogorov function
C, then one can without loss of generality assume the following additional
properties of f :

• For all x, fx
1 > fx

2 > . . . > fx
bx

.

• There is a constant c with fx
1 ≤ |x|+ c for all x.

• Assume that Kolmogorov complexity is defined with respect to the uni-
versal Turing machine U . For every x, t where fx

t is defined there is a
p ∈ {0, 1}fx

t such that U(p) = x.

Note that these conditions imply that C(x) = fx
bx

. Thus one cannot compute
bx from x.

In order to keep the notation simple, k depends only on the length of x. We
denote the length of x by n and might refer to k(n)-enumerators. When k
is constant, we will speak of 2-enumerators, 3-enumerators, k-enumerators
and so on.

A set A is weak-truth-table reducible (wtt-reducible) to set B if there is a
Turing reduction M from A to B such that there is a recursive function g
which is an upper bound for the length of all queries of M : MB(x) never
asks queries to B of length greater than g(x). Furthermore, A is truth-table
reducible (tt-reducible) to B if there is a Turing reduction M from A to B
such that MC(x) is defined for all oracles C and inputs x. Note that for
tt-reductions there also exists the upper bound g on the length of the queries
of M .

The reader might note that enumerators appear outside the field of frequency
computation also in the context of the study of recursively traceable and r.e.
traceable oracles where Terwijn and Zambella [31] called a set A recursive
traceable iff there is a recursive function k such that every g ≤T A has a
strong k(n)-enumerator; A is r.e. traceable iff there is a recursive function k
such that every g ≤T A has a k(n)-enumerator.

3 The Complexity to Compute Enumerators

The fact that the Kolmogorov function itself is hard for r.e. sets is a folk
theorem with a relatively easy proof. Kummer [21] showed that the halting
problem, K, is even tt-reducible to C. Conversely, withK as an oracle we can
easily decide the Kolmogorov complexity of any string. So, loosely speaking,
C and K have the same hardness.

Note that not only C itself is Turing hard for r.e. sets, but also every
nontrivial lower bound for C is. Li and Vitanyi [23] considered the function
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m given as m(x) = min{C(x) : x ∈ {0, 1}∗ ∧ |x| ≥ n} which is the largest
nondecreasing lower bound of the Kolmogorov function. This function m –
as well as any further nondecreasing unbounded function majorized by m
– is Turing hard for r.e. sets; one can exactly take the proof in [33]: The
function s(n) = min{n : m(n) > 2e + c} majorizes min{t : ϕe,t(e) ↓} for
some constant c and all e ∈ K since the first t where ϕe,t(e) is defined can
be computed from e. Thus e ∈ K iff ϕe,s(n)(e) is defined.

This paper is not about the complexity of the Kolmogorov function itself,
but about enumerations of the Kolmogorov function. The question is: how
hard are these enumerations? Clearly, the complexity depends on the number
of outputs of such a function. On one hand, the Kolmogorov function can
be directly computed from a 1-enumerator. Thus every 1-enumerator for C
is hard for r.e. sets. On the other hand, for any constant a, we can compute
an (n − a)-enumerator for C, essentially a Turing machine that outputs all
values v with c + a < v ≤ n + c on inputs of length n except on the finite
number of strings that have C(x) ≤ c + a; there C(x) is output explicitly.
The constant c used here is the one given in Definition 2.1. In this paper
we determine how the complexity depends on the number of values that are
output by the enumerator and show first that no recursive function can do
better than essentially enumerate all possible values of C.

Theorem 3.1 There is a constant a depending only on the universal ma-
chine U defining the Kolmogorov complexity C such that every recursive
k(n)-enumerator f satisfies k(n) ≥ n/a for almost all n.

Proof: Let C be the plain Kolmogorov complexity and U be the underlying
unary universal machine. Let f be any enumerator for C which satisfies all
conditions from Remark 2.3. The goal is now to get the desired lower bound
for k given as k(n) = max{bx : x ∈ {0, 1}n}.

In order to use in the considerations for the lower bound the index e of
f as a partial-recursive function, the considered input is chosen such that e
can be computed from it: the inputs are taken from sets Xn,e = {0}e · {1}1 ·
{0, 1}n−e−1.

Now consider any n ≥ 2e and all inputs from Xn,e. In the following, let
m be the maximal number such that there is an x ∈ Xn,e with fx

m being
defined; note that m ≤ k(n) and C(x) = fx

m for this x. The lower bound for
k(n) will be established in the following case-distinction.

(a) There is an x ∈ Xn,e with fx
m being defined and fx

m ≥ n/2− e. Given
m,n, e, one can search for an x ∈ Xn,e such that fx

m = ϕe(x,m) is defined
and fx

m ≥ n/2− e. So one can describe x with c1 + 4 · log(n) many bits for a
constant c1 being independent of n,m, e. It follows that n/2−e ≤ c1+4·log(n)
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and thus case (a) holds only for finitely many n.
(b) If fx

m is defined for an x ∈ Xn,e then fx
m < n/2− e. Let

m′ = max{t ≤ m : ∃x ∈ Xn,e (fx
t is defined and C(x) ≥ n− t · b/2− e)}

where b is the greatest lower integer bound for n/m. Note that m′ < m since
otherwise case (a) would hold. Among the x ∈ Xn,e where fx

m′+1 is defined
there is a z where the computation of f z

m′+1 terminates last. There is a d ≥ 1
such that f z

m′+d = C(z). There is a description y of length f z
m′+d such that

U(y) = z. By choice of m′, C(z) < n−(m′+d) ·b/2−e. Now it is shown that
given y, b, d, one can compute an x′ of length n with C(x′) ≥ C(z) + d · b/2.

1. Compute U(y) – the result is z.

2. Compute the number of 0s before the first occurrence of a 1 in z – the
result is e.

3. Compute the length of y – the result is C(z).

4. Compute the length of z – the result is n.

5. Find the number m′ such that f z
m′+d = C(z) – the value m′ is unique

and the same as above.

6. Determine the number s of steps to compute f z
m′+1 and let

Y = {x ∈ Xn,e : fx
m′+1 is computed in up to s steps}

– by choice of z, Y is the set of those x ∈ Xn,e where fx
m′+1 is defined

at all.

7. Search for an x′ ∈ Xn,e−Y such that fx′
m′ ≥ C(z) + d · b/2 – for this x′,

fx′
m′ = C(x′) and fx′

m′+1 is undefined.

Note that, in the seventh step, x′ exists since by the choice of m′: there is
an element x′′ in Xn,e such that fx′′

m′ is defined and C(x′′) ≥ n−m′ · b/2− e.
Furthermore, m′ is the maximal such value and therefore either fx′′

m′+1 is
undefined or C(x′′) < n− (m′ + 1) · b/2− e; as that second condition cannot
hold, the first one is true and x′′ /∈ Y . Since C(z) < n − (m′ + d) · b/2 − e,
one has C(x′′) ≥ n−m′ · b/2− e > C(z) + d · b/2 and x′′ is a possible choice
for x′.

Now one has that C(z) + d · b/2 ≤ C(x′). Furthermore, x′ was computed
from b, d and y, thus C(x′) ≤ C(z)+2·(log(b)+log(d))+c2 for some constant
c2. Recall that log(b) + log(d) = log(b · d). So, b · d ≤ 4 · log(b · d) + 2 · c2.
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The value a = max{b′ + 2 : b′ is a natural number and b′ ≤ 4 · log(b′) + 2 · c2}
is an upper bound for b+ 1 and thus for n/m.

So, putting all things together, case (b) applies to all sufficiently large n
and k(n) ≥ n/a for the a defined in this case. Note that above constants
c1, c2, a are independent of e and that the construction goes through whenever
the e-th partial-recursive function is an enumerator for C with the properties
from Remark 2.3. 2

Remark 3.2 The result above is tight: For every positive integer a there is a
universal machine U such that every program’s length is divisible by a. Then
C(x) is strongly n/a-enumerable for this fixed a.

The concept of enumerators can be relativized. A function g is k(n)-enumer-
able relative to A if there is an k(n)-enumerator f such that x, t → fx

t is a
partial A-recursive function with g(x) ∈ f(x) = {fx

1 , . . . , f
x
bx
} for all x. The

next result provides that – for a constant k – the Kolmogorov function is
k-enumerable relative to A iff A is Turing-hard for r.e. sets. For the proof of
this result, Π0

1-classes are important.

Remark 3.3 (Π0
1-classes) A Π0

1-class is the complement of a Σ0
1-class. A

Σ0
1-class can be described by an oracle machine (with void input) which on

oracles inside the class reads some data and eventually terminates in an
accepting state while on oracles outside the class it either never halts or
terminates in a rejecting state. Since the latter can be avoided by going into
an artificially nonterminating loop, one can characterize any given Π0

1-class
as the class of all oracles for which a suitable oracle machine (with void input)
does not halt. That is, the Π0

1-class S defined by M is given as

S = {B ⊆ lN : MB never halts}.

Equivalently, one can define that a Π0
1-class is the set of infinite branches of

a binary recursive tree T ; here σ ∈ T iff M has not yet halted with oracle σ
quickly, that is, the computation Mσ does not terminate within |σ| steps.

One can relativize the concept of a Π0
1-class to an oracle A and adapt

the cone-avoidance result of Jockusch and Soare [18, Theorem 2.5] to the
following. Given a set A 6≥T K, the relativized Π0

1-class

{B ⊆ lN : MA⊕B never halts}

is either empty or contains a set B such that A⊕B 6≥T K.

Theorem 3.4 Let k ∈ {1, 2, 3, . . .} be a constant. The Kolmogorov function
is k-enumerable relative to a set A iff A ≥T K.
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Proof: Since C ≤T K, the Kolmogorov function C is k-enumerable relative
to any A ≥T K by taking f(x) = {C(x)} for all x. So the main task is to
show that this is impossible for A 6≥T K.

Let a constant k ∈ {1, 2, 3, . . .} and an oracle A 6≥T K be given. Assume
by way of contradiction that there is a partial A-recursive k-enumerator f
for C, that is, the function x, t→ fx

t is partial A-recursive, bx ∈ {1, 2, . . . , k}
and fx

bx
= C(x) for all x.

Let Ks be a recursive enumeration of K in the sense that Ks contains
those s elements which are enumerated into K first; K0 = ∅. Recall from
Definition 2.1 that C can be approximated monotonically from above by the
function s, x→ Cs(x).

We uniformly in n, i recursively enumerate sets Xn,i; the intersection of
all nonempty Xn,i contains then – for each n – strings where C is difficult to
k-enumerate. The further outline is that a set BF selecting such strings for
each n will be chosen such that on one hand A⊕BF 6≥T K and on the other
hand one can compute a function dominating cK using k-enumerator at the
strings selected by BF , a contradiction.

The algorithm to enumerate the Xn,i is uniform in n and has a vari-
able i whose value is always the largest index such that Xn,0, Xn,1, . . . is not
empty. For each of these sets there is at most one stage s where elements are
enumerated into it.

• In stage 0 let i = 0 and Xn,0 = {0, 1}(n+1)(n+1). Furthermore, initialize
Xn,1, Xn,2, . . . as empty sets.

• In stage s = 1, 2, . . ., check whether

{0, 1, . . . , n} ∩Ks 6= {0, 1, . . . , n} ∩Ks−1.

If so, do the following:

– Update i = i+ 1.

– While |Xn,i| < 2(n+1)(n+1−i), select an x ∈ Xn,i−1 −Xn,i for which
Cs(x) is greatest and enumerate x into Xn,i.

Note that for every n, the maximal value of the variable i is the number of
stages s such that some m ≤ n goes into K at s.

Consider the class S of all functions F mapping each n into Xn,0 such
that, for all n and i ∈ {0, 1, . . . , n+ 1}, either Xn,i = ∅ or F (n) ∈ Xn,i. Note
that formally S does not contain functions F but coded versions BF of these
F where each BF has the characteristic function F (0) ·F (1) ·F (2) · . . . being
obtained from F by concatenating the strings of the values of F ; BF and F
can easily be calculated from each other since |F (n)| = (n+ 1)2 for all n.

The class S is a Π0
1-class since the conditions to be checked are uniformly

Π0
1: Whenever some element is enumerated intoXn,i then exactly 2(n+1)(n+1−i)

11



many elements are enumerated intoXn,i. So whenever one discovers thatXn,i

is not empty, one can check explicitly whether F (n) ∈ Xn,i.
Furthermore, S is not the empty class. A witness for the nonempti-

ness is the function F which is defined on input n as follows: Let i be
the maximal number where Xn,i 6= ∅ and let F (n) is the lexicographi-
cally first element of Xn,i. Since Xn,i ⊆ . . . ⊆ Xn,1 ⊆ Xn,0, one has that
F (n) ∈ Xn,0, Xn,1, . . . , Xn,i and BF is a member of S.

Using Remark 3.3, we fix F such that BF ∈ S and A⊕BF 6≥T K.
Now we construct an (A ⊕ BF )-computable function g which dominates

the function cK given by

cK(n) = max{s : s = 0 ∨ {0, 1, . . . , n} ∩Ks 6= {0, 1, . . . , n} ∩Ks−1}.

Then, for almost all n, n ∈ K ⇔ n ∈ Kg(n). This gives then A ⊕ BF ≥T K
in contradiction to the assumption on A and the choice of BF .

For each n let jn be the maximal t such that f
F (n)
t is defined, that is,

jn = bF (n) and f
F (n)
jn

= C(F (n)). Now let j be the limit superior of the jn
for n→∞ and let

g(n) = s for the first stage s for which there is an m ≥ n such

that f
F (m)
j is defined within s steps and Cs(F (m)) = f

F (m)
j .

Now it is verified that g dominates cK .
Given any n, let m be the value of the variable of the same name in the

algorithm g. Furthermore, denote by s1, . . . , si the stages where the elements
of Xm,1, . . . , Xm,i are enumerated into these sets. Without loss of generality,
0 ∈ K and i, si > 0. So i is the largest index of a set Xm,i which is not empty
and s1 < s2 < . . . < si. Furthermore, F (m) ∈ Xm,i and si = cK(m).

On one hand F (m) enters Xm,i at stage si and it follows from the def-
inition of the Xm,i that Csi

(F (m)) ≥ Csi
(x) for at least half of the mem-

bers x of Xm,i−1. Since Xm,i−1 has 2(m+1)(m+2−i) members, Csi
(F (m)) ≥

(m+ 1)(m+ 2− i)− 1.
On the other hand, one can compute F (m) from m, i and the number

of elements which go into Xm,i before F (m). Since i ≤ m + 1, a prefix-free
coding of the numbers m, i can be done using 3 log(m)+4 bits. Furthermore,
Xm,i has 2(m+1)(m+1−i) many members. Thus there is a constant c with
C(F (m)) ≤ (m+ 1)(m+ 1− i) + 3 log(m) + c.

If n is sufficiently large, then one can use m ≥ n to conclude that jm = j,
C(F (m)) = f

F (m)
j and Cs(F (m)) = C(F (m)) ≤ (m + 1)(m + 1 − i) +

3 log(m)+ c < (m+1)(m+2− i)−1 ≤ Csi
(F (m)). Since C is approximated

from above, it follows that s > si and g(n) = s > si = cK(m) ≥ cK(n). So g
dominates cK although g is computable relative to A⊕BF . This contradiction
gives that the assumption A 6≥T K is false. So C is k-enumerable only relative
to those oracles which are hard for the halting-problem. 2

12



Considering a slowly increasing, recursive and unbounded functions k(n)
instead of a constant k, the Theorem 3.7 below shows that one can find an
r.e. incomplete degree relative to which the Kolmogorov function is k(n)-
enumerable. Theorem 3.7 uses the existence of a relativized construction
giving a set which is low for prefix-free Kolmogorov complexity.

Such sets are of independent interest and play a major role in the field of
algorithmic randomness; Muchnik presented the first such construction 1999
in a seminar in Moscow and included the publication of the result into this
work. Nies [25] showed that the following two notions are both equivalent to
saying that E is low for prefix-free Kolmogorov complexity:

• The notion “Low for Random” introduced by Zambella [32] and proven
to exist outside the class of the recursive sets by Kučera and Terwijn
[20]: E is low for random iff every Martin-Löf random set is also Martin-
Löf random relative to E.

• The notion “H-Trivial”, also called “K-trivial”, introduced by Chaitin
[12] and proven to exist outside the class of the recursive sets by Solo-
vay [30]: E is H-trivial iff ∃c∀n (H(E(0)E(1) . . . E(n)) ≤ H(n) + c).

Downey, Hirschfeldt, Nies and Stephan [13] provide an overview on this field
and indicate with reference to Muchnik that Theorem 3.6 can be obtained
by modifying some proof of a related result.

Definition 3.5 A set E is low for prefix-free Kolmogorov complexity if
∃c ∀x (HE(x) ≤ H(x) + c).

Theorem 3.6 There is a recursively enumerable and nonrecursive set which
is low for prefix-free Kolmogorov complexity.

Proof: The set E is constructed to satisfy the following two conditions:

• E is simple;

• There is a constant c such that ∀x (H(x) ≤ HE(x) + c).

In order to deal with HE properly, the universal machine U on which the
Kolmogorov complexity is based is chosen such that it makes use of an oracle
and satisfies the following conditions:

• UA is a universal prefix-free machine defining HA for all oracles A;

• For all oracles A, the sum over all 2−|p| where UA(p) is defined is at
most 1/2.
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The set E is enumerated in stages with E0 being initialized as ∅. In step s
one searches for the least e ≤ s such that there is an x ≤ s to satisfy the
following four conditions where the first three conditions guarantee that E
will be a simple set and the fourth is the Kraft-Chaitin condition:

• first, x ≥ 2e;

• second, x ∈ We,s;

• third, no element is already enumerated into the intersection of We and
E within s steps, that is, We,s ∩ Es = ∅;

• fourth, rs < 2−e−2 where rs is the sum of all 2−|p| such that the compu-
tation UEs(p) has terminated within s computation steps and queried
the oracle Es at x.

If an e is found and x is the least witness for e to satisfy the given four
conditions then Es+1 = Es ∪ {x} else Es+1 = Es.

Now let G be the set of all triples (p, y, s) such that UEs+1(p) is defined
and outputs y within s + 1 computation steps and the computation does
either not halt in s steps or there is a number queried by the computation
which is in Es+1 but not in Es. Let G1 be the subset of all (p, y, s) ∈ G
such that no element queried by the computation of UEs+1(p) is in E−Es+1;
note that all elements queried are in the set {0, 1, . . . , s} but it might be that
only some of the members of this set are queried. Let G2 = G − G1. Now
it is shown that the sum of all 2−|p| over all (p, y, s) ∈ Ga is bounded by 1/2
for a = 1, 2 which then gives that the complete sum over all (p, y, s) ∈ G is
bounded by 1.

First consider G1. Note that (p, y, s) ∈ G iff UE(p) = y and s is the first
stage such that UE(p) halts within s + 1 steps and no element queried by
the computation is in E − Es+1. Note that no computation is considered to
halt in 0 steps and therefore it is safe to work with s + 1 and not with s.
The implication (p, y, s) ∈ G⇒ UE(p) = y and the fact that for every (p, y)
with UE(p) = y there is at most one s with (p, y, s) ∈ G1 imply that one can
transfer the bound on the halting probability of UE to a bound for the sum
over all members of G1:∑

(p,y,s)∈G1

2−|p| ≤
∑

p:UE(p)↓
2−|p| < 1/2.

Second considerG2. If (p, y, s) ∈ G2 then there is a t > s such that an element
queried by the computation of UEs+1(p) is in Et+1 − Et. In particular, 2−|p|

contributes to the sum rt considered in the fourth condition of the choice of
e and x in the enumeration algorithm for E. Thus one gets the inequality∑

(p,y,s)∈G2

2−|p| < r0 + r1 + . . . < 1/2
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where the second part r0 + r1 + . . . < 1/2 is due to the fact that every
stage deals either with one e uniquely assigned to it or does not change the
oracle: if Es+1 = Es then rs = 0 and if Es+1 = Es ∪ {x} for some x /∈ Es

then there is a parameter e with x ∈ We,s+1 ∩ Es+1, We,s ∩ Es = ∅ and
rt < 2−e−2. So the sum of all rt can be bounded by the sum of all 2−e−2

which is 2−2 + 2−3 + 2−4 + . . . = 1/2. Using G = G1 ∪G2, the inequality∑
(p,y,s)∈G

2−|p| < 1

holds. Thus one can build by the Kraft-Chaitin Theorem a prefix-free ma-
chine V such that for every (p, y, s) ∈ G there is a q ∈ {0, 1}|p| with V (q) = y.
For every y there is a shortest description p ∈ {0, 1}HE(y) with UE(p) = y. For
these y, p there is an s with (y, p, s) ∈ G1 and therefore there is a q ∈ {0, 1}|p|
with V (q) = y. Thus HE(y) ≤ min{|q| : V (q) = y}. It follows that there
is a constant c with ∀y (HE(y) ≤ H(y) + c) and E is low for prefix-free
Kolmogorov complexity.

It remains to show that E is simple. So let e be an index of an infinite
set. Let x ∈ We be so large that x ≥ 2e and∑

(p,y,s)∈G∧s≥x

2−|p| < 2−e−2.

Such an x exists since the sum of all 2−|p| over all (p, y, s) ∈ G converges and
one can pick an x from the infinite set We which is larger than the parameter
s in those first finitely many addends which are needed to get all of the sum
but a missing subsum of less than 2−e−2. Now let t be so large that t > x,
x ∈ We,t and We′,t meets Et whenever e′ < e and We′ meets E. It follows
that no e′ < e qualifies at stage t but either We,t meets Et or e qualifies
by satisfying all four conditions; the last one is met by arguing that rt is
bounded by all the sum of 2−|p| over all the (p, y, s) ∈ G with s ≥ x. It
follows that either We,t meets Et or an element of We is enumerated into E
at stage t, so We and E are not disjoint. That E is coinfinite is enforced by
the first condition which implies that there are at most e numbers x smaller
than 2e enumerated into E. That E is recursively enumerable is easy seen
from the fact that every step in the given enumeration procedure of E is
done by the algorithm in finite time. This completes the proof. 2

Theorem 3.7 There is an r.e., Turing-incomplete set A such that for any
recursive, nondecreasing and unbounded function k with k(0) = 1 the Kol-
mogorov function is k(n)-enumerable relative to A.

Proof: One can generalize Theorem 3.6 such that there is an oracle ma-
chine which enumerates relative to an oracle B a set EB with the following
properties:

15



• EB is simple relative to B: it is coinfinite, recursively enumerable rel-
ative to B and intersects with every infinite B-r.e. set.

• B ≤T E
B.

• EB is low for prefix-free Kolmogorov-complexity relative to B, that is,
∃c∀x(HB(x) ≤ HEB

(x) + c).

As the anonymous referee of the Journal of Symbolic Logic pointed out, the
relativization of Theorem 3.6 to this result is standard; nevertheless, a direct
proof of this result is found in the technical report version of this paper [5].
Jockusch and Shore [17] showed that the second condition ∀B (B ≤T EB)
implies that there is an r.e. set A for which EA has the Turing degree of
the halting problem. Fix from now on A with this property. Note that even
A <T E

A ≡T K since EA is simple relative to A. Nies [25, Theorem 6.3(II)]
mentioned this construction of such a set A first, details are given here.

Let UB be the universal function for prefix-free Kolmogorov complexity;
that is, for every oracle B, the complexity HB relative to B is defined using
UB. Given the recursive function k, one defines an A-recursive k(n)-enum-
erator f̃ which does for input x of length n the following:

f̃(x) enumerates the component vx of each vector v such that
v is so long that the component vx exists and v = UA(p) for a
program p with |p| ≤ 3 log(k(n)).

Note that due to UA being prefix-free, f̃ is already a k(n)-enumerator. Now
one constructs from f̃ a k(n)-enumerator for C by

fx
t =

{
C(x) if t = 1 and C(x) /∈ {f̃x

1 , . . . , f̃
x
bx
};

f̃x
t otherwise.

where fx
t is undefined whenever t 6= 1 and f̃x

t is undefined; bx is as in Re-
mark 2.3.

It remains to show that f is also an A-recursive enumerator for C. This
is done by showing that f, f̃ are finite variants. The proof of this uses the
following property of the universal K-recursive machine UK as a tool: For
every number r there is a program pr such that UK(pr) computes the vector

(C(λ), C(0), C(1), C(00), C(01), . . . , C(1m))

where m is the first length such that k(m) ≥ 2r+1. Without loss of generality,
pr is the shortest program for this vector. Note that m can be computed from
r since k is recursive. Thus the length of pr is bounded by 2 log(r) for almost
all r.
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Now let r(x) = log(k(|x|)) for any x; more precisely, let n = |x| and r(x)
be the unique integer with 2r(x) ≤ k(n) < 2r(x)+1. Then m > n for the m
computed from r(x) above. So UK(pr(x)) outputs a vector v such that vx

exists and is equal to C(x).
Due to the choice of A, there is a program qr(x) with UA(qr(x)) = UK(pr(x))

which is only by a constant longer than pr(x). So, for almost all x, |qr(x)| ≤
3 log(k(|x|)) and UA(qr(x)) is taken into account by f̃(x). Therefore, for al-

most all x, the function f̃(x) enumerates C(x) relative to A. The enumerators
f̃ and f are finite variants and f is an A-recursive k(n)-enumerator for C. 2

We now use Theorem 3.7 to extend our result to strong enumerations as
follows.

Theorem 3.8 Let k be a strictly positive, nondecreasing recursive function.
Then there exists a set B not above K such that the Kolmogorov function
has a strong B-recursive k-enumerator.

Proof: Take the set A from Theorem 3.7 and consider the partial A-recursive
function i, x→ fx

i equal to the ith element enumerated by the enumeration
algorithm in the proof of Theorem 3.7. Recall that A 6≥T K. Using the
fact that i, x → fx

i is recursively bounded and Remark 3.3, there is an
extension f of f such that its domain is {(i, x) : 1 ≤ i ≤ k(|x|)} and its
graph B = {(i, x, y) : y = f

x

i ∧ 1 ≤ i ≤ k(|x|)} satisfies A ⊕ B 6≥T K. In
particular, f is a strong B-recursive k(n)-enumerator for C. 2

4 Strong Enumerators as Oracles

We saw in the previous section that for constant k, a k-enumerator for the
Kolmogorov function cannot be computed without access to an oracle that
is already as hard as K. As a corollary one can say that every strong k-
enumerator for C computes the halting-problem, but the proof does not
provide an algorithm to do this for all strong enumerators in a uniform way.
Therefore we ask in this section which information can be retrieved uniformly
from a given strong 2-enumerator for C. Later we will ask the same ques-
tion in the complexity-theoretic context and show that the complexity-class
PSPACE can be characterized this way. In the present section, the next re-
sult reveals that enumerators uniformly carry some information although the
further results show that it is not possible to compute a concrete nonrecur-
sive set uniformly from every strong enumerator of the Kolmogorov function.
Indeed, under certain assumptions about the choice of the universal Turing
machine used in defining Kolmogorov complexity, one can extend any {0, 1}-
valued partial-recursive function uniformly using any strong 2-enumerator
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for the Kolmogorov function as an oracle. Note that any extension f of ψ
has PA-complete Turing degree if ψ is taken to be

ψ(x) =
{
ϕx(x) if ϕx(x) ↓∈ {0, 1};
↑ otherwise.

That is, such an f can compute a complete and consistent extension of Peano
Arithmetic in this case.

Theorem 4.1 Let ψ be any given partial-recursive {0, 1}-valued function.
One can choose the universal machine U on which the Kolmogorov complexity
is based in such a way that there is a fixed program e such that, given any
strong 2-enumerator f for the Kolmogorov function, ϕf

e computes a total
extension of ψ with only one query to f .

Proof: One chooses U such that C(x) ≡ ψ(x) modulo 3 whenever ψ(x) is
defined and C(x) ≡ 2 modulo 3 otherwise. This is obtained by starting with
an arbitrary universal machine Ũ and defining that U(p10l+l′1) = Ũ(p) if
Ũ(p) is defined, |p| + 2 + l ≡ 0 modulo 3 and either l′ = 2 or l′ = ψ(Ũ(p)).
For those q where U(q) cannot be defined by this method, U(q) remains
undefined.

Now define the program e taking the first case to apply from the be-
low case distinction where fx

1 , f
x
2 are the two values given by any strong

2-enumerator f for C queried exactly at x:

ϕf
e (x) =


ψ(x) if fx

1 6≡ 2 ∧ fx
2 6≡ 2 modulo 3;

0 if fx
1 6≡ 1 ∧ fx

2 6≡ 1 modulo 3;
1 if fx

1 6≡ 0 ∧ fx
2 6≡ 0 modulo 3.

Since there are only two values fx
1 , f

x
2 , it is clear that at least one of these

conditions holds. Furthermore, if both, fx
1 and fx

2 , are different from 2 mod-
ulo 3, then ψ(x) is defined. Thus, ϕf

e is total and {0, 1}-valued. If ψ(x) ↓= b
then one of fx

1 and fx
2 must be b, so the case for ϕf

e (x) = 1 − b does not
apply and ϕf

e (x) is correct by either taking the case ϕf
e (x) = ψ(x) or the case

ϕf
e (x) = b. So, the program e works with every strong 2-enumerator supplied

as oracle f to e. 2

Since C is as hard as the halting problem, it is natural to ask whether The-
orem 4.1 also holds for computing a fixed set, for example K, instead of just
finding an arbitrary extension depending on the queried strong enumerator.
Theorem 4.2 answers this question negatively. We extend the negative result
in two directions: For every fixed Turing reduction e, every nonrecursive set
A and every recursively bounded function g there is a strong 2-enumerator
for g such that the reduction e does not compute A relative to the given
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strong enumerator. Furthermore, in the case of weak-truth-table reducibil-
ity, we can consider all reductions instead of a fixed one. Corollary 4.5 shows
that, given A and g as above, there is a strong 2-enumerator for g which is
not wtt-hard for A.

Theorem 4.2 Assume that A can be computed by a fixed reduction making
one query relative to any strong 2-enumerator of C. Then A is recursive.

Proof: Assume that the hypothesis of the theorem holds. That is, there is a
program e and a recursive function h such that for every strong 2-enumerator
f of C,

∀x A(x) = ϕ{fh(x)
1 ,f

h(x)
2 }

e (x).

Now it is shown that A is recursive.
Let c be a constant with C(z) ≤ |z| + c for all z. Let y be the query

generated by e on input x. Let ϕf
e (x) denote the outcome of the computation

e on input x using oracle f and let ϕ{n1,n2}
e (x) denote the outcome of the

program e run on input x, but with the numbers n1, n2 substituted for the
answer to the query y. We determine whether x ∈ A as follows: Compute
ϕ{n1,n2}

e (x) for all possible n1, n2 ∈ {0, 1, . . . , |y|+ c}. Clearly if there are an
n1 and an i ∈ {0, 1} such that ∀n2 ∈ {0, 1, . . . , |y|+ c} (ϕ{n1,n2}

e (x) = i), then
also ϕf

e (x) = i since C(y) is one of these values. It remains to argue that
such an n1 exists. However n1 = C(y) meets this condition. 2

This theorem easily generalizes in two directions: to more general reductions
and to more general functions.

Corollary 4.3 Let g be any recursively bounded function. Suppose that there
is a fixed reduction ϕe that weak-truth-table reduces a set A to all possible
strong 2-enumerators for g. Then A is recursive.

Proof: Let b be a recursive bound for g, more precisely, choose b such
that b is recursive and g(x) ∈ {0, 1, . . . , b(x)} for all x. For input x, com-
pute the number h of queries made by the reduction ϕe and the h places
q1, . . . , qh of these queries. Furthermore, compute the maximal possible val-
ues b(q1), . . . , b(qh) of g at these places. Now search for y, n1 ∈ {0, . . . , b(q1)},
. . ., nm ∈ {0, . . . , b(qm)} such that for all m1 ∈ {0, . . . , b(q1)}, . . ., mh ∈
{0, . . . , b(qh)}, the reduction ϕe returns for input x the value y provided that
it receives the answers {n1,m1}, . . . , {nh,mh} for the queries to the strong
2-enumerator at the places q1, . . . , qh. The verification of the correctness and
existence of this answer y is analogous to the verification in the proof of
Theorem 4.2. 2
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The condition that g is recursively bounded is necessary. Recall the non-
recursive convergence-modulus cK of K from the proof of Theorem 3.4: cK
can be computed with one query relative to any strong k(n)-enumerator f
for cK . Querying f at input x, one receives a set f(x) containing cK(x) and
knows that cK(x) = s for the maximal s ∈ f(x) such that Ks∩{0, 1, . . . , x} 6=
Ks−1∩{0, 1, . . . , x}. Furthermore, the halting problem K itself is computable
relative to any strong enumerator for cK .

With a bit more care, the proof of Theorem 4.2 even extends to Turing
reductions.

Theorem 4.4 Let g be any recursively bounded function. Suppose that there
is a fixed reduction ϕe that Turing reduces a set A to all possible strong 2-
enumerators for g. Then A is recursive.

Proof: Let b(x) be a recursive function such that 0 ≤ g(x) ≤ b(x) for all x.
A full query tree of e on input x has the following form: At each internal

node we have labelled the query q and a possible answer yq ≤ b(q). There is a
branch for each z ≤ b(q) representing (yq, z) as the strong 2-enumeration for
g(q). A full query tree has finite size, every leaf has the computation halting
and the answers at all leaves agree.

First Claim: A full query tree for x exists.
Simply consider the tree with yq = g(q) at every internal node. All leaves

must give the same (correct) answer. If the tree is not finite, by König’s
lemma it must have an infinite path which defines a strong 2-enumerator
that e fails to reduce to.

Second Claim: Any full query tree gives the correct answer on all leaves.
Consider a path such that either yq = g(q) or z = g(q) for all queries q

on that path. Since ϕe reduces A to all strong 2-enumerators for g, this leaf
must give the correct answer. Since all leaves give the same answer, all leaves
give the correct answer.

The recursive algorithm for A just searches for a full query tree and outputs
the answer that all leaves agree to. 2

Corollary 4.5 For any nonrecursive setA and any recursively bounded func-
tion g there exists a strong 2-enumerator f of g such that A 6≤wtt f .

Proof: This result is obtained by combining the methods from Theorem 4.4
with a finite extension argument. Start with σ0 having the domain ∅. For
every i there is an extension fi of σi and an xi such that fi is a strong 2-
enumerator for g and the i-th wtt-reduction ϕei

fails to compute A(xi) from
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fi. Since the reduction queries fi at only finitely many places, one can take
an upper bound ui on the length of σi and the queried places. Let σi+1 be the
restriction of fi to the domain {0, 1, . . . , ui}. σi+1 is a strong 2-enumerator for
g on this domain and the wtt-reductions ϕe0 , ϕe1 , . . . , ϕei

do not wtt-reduce
A to any extension of σi+1. Repeating this argument inductively, one obtains
that the limit f of all σi is a strong 2-enumerator for g to which A is not
wtt-reducible. 2

5 Prefix-Free Kolmogorov Complexity

In this section it is shown that the results for C also hold for the prefix-free
complexity H: H is based on a unary partial-recursive function U such that
for all distinct programs p, p′ in the domain of U it holds that neither p is a
prefix of p′ nor p′ a prefix of p. Furthermore, U has to be universal among
all these numberings.

With minor modifications, the proof of Theorem 3.1 works also for prefix-
free Kolmogorov complexity. The corresponding result is then the following.

Theorem 5.1 There is a constant a depending only on the universal ma-
chine U defining the prefix-free Kolmogorov complexity H such that every
k(n)-enumerator f satisfies k(n) ≥ n/a for almost all n.

Furthermore, one can also transfer the hardness-result Theorem 3.4 to the
prefix-free Kolmogorov complexity H. Here of course one defines the Xn,i

with respect to approximations to H instead of approximations to C. The
most important ingredient for transferring the proof is that one can build a
prefix-free machine which codes every x ∈ Xm,i with 3 log(m) + 4 + (m+ 1)
(m+1− i) many input bits by coding first in 3+2 log(m) bits the number m
in a prefix free way, than using log(m)+1 bits to code i and code with (m+1)
(m + 1 − i) bits how many numbers go into Xm,i before x. Thus the upper
bound on C(F (m)) is actually an upper bound on H(F (m)). Furthermore,
the lower bound on Csi

(F (m)) from the proof of Theorem 3.4 can directly
be taken as a lower bound of Hsi

(F (m)) in this proof. The rest of the proof
transfers directly. This gives the following result.

Theorem 5.2 Let k be a constant. If the prefix-free Kolmogorov function H
is k-enumerable relative to a set A then A ≥T K.

The proof of Theorem 3.7 does not use any property of C besides the fact
that C is a total K-recursive function. This clearly also holds for H and thus
the result transfers immediately.
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Theorem 5.3 There is an r.e., Turing-incomplete set A such that for any
recursive, nondecreasing and unbounded function k with k(0) = 1 the prefix-
free Kolmogorov function is k(n)-enumerable relative to A.

The choice of the underlying universal function U in Theorem 4.1 works also
for a universal function defining the prefix-free Kolmogorov complexity.

Theorem 5.4 Let ψ be any given partial-recursive {0, 1}-valued function.
One can choose the universal machine U on which prefix-free Kolmogorov
complexity is based in such a way that there is a program e which computes
a total extension ϕf

e of ψ with one query to any strong 2-enumerator f for
the prefix-free Kolmogorov function.

The further results of Section 4 state that the following holds for every given
function g.

• No non-recursive set is Turing reducible to all strong 2-enumerators for
g by the same reduction;

• No non-recursive set is wtt-reducible to all strong 2-enumerators of g.

For these results it does not matter whether g is C, is H or is something else.

6 Resource-Bounded Reductions to

2-Enumerators

From now on, we consider the resource-bounded world. In particular, we con-
sider polynomial time reductions to 2-enumerators of the conditional poly-
nomial space Kolmogorov complexity and other functions. We characterize
some well-known complexity classes as follows: A set A is in this class iff there
is a reduction of a specific type computing A relative to any 2-enumerator of
a suitable function. In the case of PSPACE, this function can be the space
bounded conditional Kolmogorov complexity. Besides PSPACE, we will be
able to characterize the class Sp

2 which was introduced by Canetti [10] and
independently Russel and Sundaram [27]. Note that NP ⊆ Sp

2 ⊆ Σp
2 ∩ Πp

2.

Definition 6.1 A set A is in Sp
2 if exist a polynomial p and a polynomial

time computable ternary predicate Q such that

• x ∈ A iff ∃v ∈ {0, 1}p(|x|) such that ∀w ∈ {0, 1}p(|x|) (Q(x, v, w));

• x /∈ A iff ∃w ∈ {0, 1}p(|x|) such that ∀v ∈ {0, 1}p(|x|) (¬Q(x, v, w)).
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Note that for general languages in Σp
2 ∩Πp

2 the second occurrence of Q could
be replaced by an arbitrary polynomial time predicate Q′. It is not known
whether Sp

2 = Σp
2 ∩Πp

2. The class Sp
2 can be characterized in terms of reduc-

tions to strong 2-enumerators for a bounded function g where g is bounded
iff there is a polynomial p with |g(x)| ≤ p(|x|) for all x. The following result
is included as it deals with reductions to enumerators and is a model for the
latter characterization of PSPACE but the result itself has no connection to
Kolmogorov complexity.

Theorem 6.2 The following statements are equivalent for any set A.

(a) A ∈ Sp
2;

(b) There are a fixed polynomial time btt(1)-reduction M and a polynomially
bounded function g such that M computes A relative to any strong
2-enumerator of g;

(c) There is a fixed polynomial time tt-reduction N and a {0, 1, 2}-valued
function h such that N tt-reduces A to any strong 2-enumerator of h.

(d) There is a fixed polynomial time tt-reduction N ′ and a polynomially
bounded function h′ such that N ′ tt-reduces A to any strong 2-enumera-
tor of h′.

Proof: (a) ⇒ (b): Given A, let p,Q as in Definition 6.1. Furthermore, let g
be a function such that

• if x ∈ A then g(x) = (v, 1) where v is the leftmost witness in {0, 1}p(|x|)

for x ∈ A;

• if x /∈ A then g(x) = (w, 0) where w is the leftmost witness in {0, 1}p(|x|)

for x /∈ A.

A strong 2-enumerator for g produces for input x two candidates (u, a) and
(u′, a′). If a = a′, then one knows that A(x) = a. If a = 0 and a′ = 1 then
A(x) = Q(x, u′, u). If a = 1 and a′ = 0 then A(x) = Q(x, u, u′).

(b) ⇒ (c): Without loss of generality, one can assume that M on input x
computes a position q(x) such that g(q(x)) is a number between 0 and 2|x|

c

for some constant c. The idea is to define a function h and a reducibility N
from A to strong 2-enumerators of h which can simulate the reduction M
from A to any strong 2-enumerator for g.

In order to simulate M , one considers for given input x the place q(x) and
codes q(x) at polynomially many places into h such that one can compute
two values with one of them being g(q(x)) from any strong 2-enumerator for
h; this computation will be realized as a tt-reduction. For input x, i, j, a, b,
consider the following two statements:
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• The ith bit of g(q(x)) is a;

• The jth bit of g(q(x)) is b.

Now let h(x, i, j, a, b) be the number of those statements which are correct.
The function h is {0, 1, 2}-valued. Furthermore, for fixed x, only the i, j ∈
{0, 1, . . . , |x|c} and a, b ∈ {0, 1} are relevant, so one has to query a given
strong 2-enumerator of h only at polynomially many places and these queries
can be done in parallel.

There are no three different numbers y1, y2, y3 which are consistent with
all answers to h: There is a position i such that the ith digit of one number,
say y3, is a while the ith digit of the other two numbers y1, y2 differ from a.
Furthermore, there is a position j where the digits of y1, y2 differ. Say, y2

and y3 have the same jth digit b and y1 not. It follows that

h(x, i, j, a, b) =


0 if g(x) = y1;
1 if g(x) = y2;
2 if g(x) = y3.

So at most 2 numbers are consistent with all the outputs of the strong
2-enumerator for h on those inputs x, i, j, a, b which satisfy i, j ∈ {0, 1, . . . ,
|x|c} and a, b ∈ {0, 1}.

One can determine these two numbers modulo 2m by just considering
the last m binary digits. Thus one can construct two candidates for g(q(x))
step by step with the search space always having only at most 2 candidates
modulo 2m before m is incremented; after m is incremented and before the
conditions on the new digit are taken into account, the number of candidates
is at most 4. So the search-space to construct the two possible vectors for
g(q(x)) contains in every step only up to 4 candidates and the search is
performed in polynomial time. Thus one can turn the btt(1)-reduction M
from A to strong 2-enumerators for g into a tt-reduction N from A to strong
2-enumerators for h.

(c) ⇒ (d) holds by definition since every {0, 1, 2}-valued function is polyno-
mially bounded.

(d) ⇒ (a): Let N ′ compute the tt-reduction from A to strong 2-enumerators
for h′. Without loss of generality there is a polynomial p1 such thatN ′ queries
the strong 2-enumerator at p1(|x|) many places at input x and the length of
each of the places is bounded by p1(|x|). Furthermore, there is a polynomial
p2 bounding the length of h′; |h′(u)| ≤ p2(|u|) for all u. Without loss of
generality every considered strong 2-enumerator f for h′ outputs on input u
a pair (fu

1 , f
u
2 ) such that both strings have at most the length p2(|u|). Now

one defines the predicate Q such that Q(x, v, w) is the output of N ′ querying
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f if v, w are lists of strings such that v contains the values fu
1 and w contains

the values fu
2 where u = u1, u2, . . . , up1(|x|) runs over the places queried by

N ′. Note that the lengths of v, w are bounded by 2 · p1(|x|) · p2(p1(|x|)). The
predicate Q has the following properties:

• Q(x, v, w) is true if x ∈ A and v = h′(u1)h
′(u2) . . . h

′(up(x));

• Q(x, v, w) is false if x /∈ A and w = h′(u1)h
′(u2) . . . h

′(up(x)).

These properties witness that A ∈ Sp
2. 2

Definition 6.3 Let U be a fixed space bounded machine with two inputs p, w
which respects the space bound 2(|p|+ |x|+ |w|) and is universal for this space
bound in the sense that for every V respecting the same space bound there is
a constant c such that whenever V (p, w) is defined then there is a program q
of length up to |p| + c with U(q, w) = V (p, w). In the following, Cspace(x|w)
denotes the size of the smallest program p such that U(p, w) = x. Cspace(x|w)
is called the space bounded conditional Kolmogorov complexity.

Note that one could define the space bound also with respect to some other
underlying polynomial in |p| + |x| + |w| instead of the given n → 2 · n; one
just has to fix any reasonable choice in the same way as a universal machine
is fixed. The universal machine is keeping track of its space use and checks
before outputting x whether the bound is kept; if the bound is not kept then
it just does not halt.

Remark 6.4 Recall that QBF is the set of all true formulas of the form

∃a1∀b1∃a2∀b2 . . . ∃an∀bnφ(a1, b1, a2, b2, . . . , an, bn)

where a1, b1, a2, b2, . . . , an, bn are Boolean variables and φ has no bound vari-
ables. The parameter n is not a constant but denotes the half of the number of
free variables occurring in φ. If n = 0 then φ is just a Boolean combination
of the Boolean constants “false” and “true”. The set QBF is PSPACE-
complete. Formulas of this type are called QBF -instances or just instances.

An important property of QBF is self-reducibility. Given a QBF -instance
as above, one can write it as

∃a1∀b1ψ(a1, b1)

where the other quantifiers and their variables are moved into the formula ψ.
Then QBF is self-reducible by the following formula:

∃a1∀b1ψ(a1, b1) ⇔ (ψ(0, 0) ∧ ψ(0, 1)) ∨ (ψ(1, 0) ∧ ψ(1, 1)).

So every instance with 2n variables, n > 0, can be reduced to four smaller
instances with 2n− 2 variables.
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Proposition 6.5 For any given constants c, k there is a constant ` such
that one can find, for every w, a string u ∈ {0, 1}` with Cspace(u|`, w) > c

by querying, for all v ∈ {0, 1}`, the values f v,`,w
1 , . . . , f v,`,w

k given by a strong
k-enumerator f for Cspace(v|`, w).

The time and space complexity to find u is independent of w except at
the place where the queries to f occur and v, `, w have to be copied onto the
oracle tape to query f .

Proof: In the following, let {f v,`,w
1 , . . . , f v,`,w

k } be the output of f on input
v, `, w and let f v,`,w

1 < . . . < f v,`,w
k ; one of these k values is Cspace(v|`, w).

Call a set I of strings of the same length an interval iff the binary values of
the strings in I form an interval in the natural numbers. Let c′ be a constant
such that c′ ≥ 2 and, for every `, every interval I ⊆ {0, 1}`, every u, u′ ∈ I
and all w, Cspace(u

′|`, w) ≤ Cspace(u|`, w) + c′ + 2 · log(||I||) where ||I|| is the
cardinality of I.

Now let c1 = c and inductively ci+1 = 3ci + c′ + 2 for i = 1, 2, . . . , k. Let
` = ck+1 and let Li = {v ∈ {0, 1}` : f v,`,w

i ≤ ci} for i = 1, 2, . . . , k.
Now fix w. On one hand, there are less than 2ck+1 strings with conditional

complexity up to ck for the given w; since f v,`,w
k is an upper bound for this

complexity the cardinality of Lk is less than 2ck+1. On the other hand, there
are at least 4ck+2 strings in {0, 1}`. So there is an interval of length 2ck not
containing any element of Lk.

Thus there is a smallest i such that an interval I ⊆ {0, 1}` of length 2ci

does not contain any string from Li. Fix this i and I.
If i = 1, one can just pick and output any u ∈ I since Cspace(u|`, w) ≥

fu,`,w
1 > c1 ≥ c.

If i > 1 then split I canonically into 2ci−ci−1 disjoint subintervals J of
length 2ci−1 . Each such interval J contains an element of Li−1 by choice of i
and I, so let vJ be the least element of the intersection Li−1 ∩ J . Note that
f vJ ,`,w

i−1 ≤ ci−1 < ci < f vJ ,`,w
i for all J . If J, J ′ are neighbouring subintervals

of I and Cspace(vJ |`, w) ≤ ci−1 then Cspace(vJ ′|`, w) ≤ Cspace(vJ |`, w) + c′ +

2 log(2 · 2ci−1) ≤ 3ci−1 + c′ + 2 = ci < f
vJ′ ,`,w
i . Hence Cspace(vJ ′|`, w) ≤

f
vJ′ ,`,w
i−1 ≤ ci−1. By induction we get that Cspace(vJ |`, w) ≤ ci−1 either for all

or for none of the considered subintervals J of I. Since there are 2ci−ci−1 such
intervals J , 2ci−ci−1 ≥ 2ci−1+1 and the number of J with Cspace(vJ |`, w) ≤ ci−1

is at most 2ci−1+1−1, the relation Cspace(vJ |`, w) > ci−1 holds for all J . Taking
J to be the first subinterval of I of length 2ci−1 and letting u = vJ , we have
Cspace(u|`, w) ≥ ci−1 ≥ c. 2

Theorem 6.6 For every constant k, there is a fixed polynomial time Turing
reduction M such that QBF = M f for all strong k-enumerators f of the
space bounded conditional Kolmogorov function Cspace.

26



Proof: In the following, x is the input to M and represents a QBF -instance.
Recall that all QBF -instances considered have an even number of variables.

The algorithm consists of a loop which is entered with a set {x, y1, . . . , ym}
of instances and a set V ⊆ {0, 1}m+1 of binary vectors such that, for a
constant j to be determined later, the following constraints hold and steps
are done:

1. |V | ≤ j and m ≤ j2;

2. V consists of binary vectors representing functions from {x, y1, . . . , ym}
to {0, 1} such that (QBF (x), QBF (y1), . . . , QBF (ym)) ∈ V ;

3. in each round, instances z1, . . . , z4m are selected by fixing the first two
variables in y1, . . . , ym in all four possibilities and a set W ⊆ V ×
{0, 1}4m is selected such that every vector w ∈ W is consistent with
the self-reduction of QBF on {y1, . . . , ym} to QBF on {z1, . . . , z4m};

4. queries to the k-enumerator for the space bounded conditional Kolmo-
gorov complexity are used in order to remove vectors different from
QBF on x, y1, . . . , ym, z1, . . . , z4m until at most j vectors are left in W ;

5. up to j2 instances y′1, . . . , y
′
m′ ∈ {z1, . . . , z4m} are selected and the pro-

jection V ′ of W onto the coordinates belonging to x, y′1, . . . , y
′
m′ for

running all above steps in the next round;

6. the algorithm halts when all variables are removed or the value of
QBF (x) can be determined otherwise.

In the following fix k to be the constant from the k-enumerator for Cspace.
Now some constants and functions are introduced which are needed for
the step to reduce the number of vectors in Step 4. For any vector r =
(a0, a1, . . . , ah) of QBF -instances, let

g(r) = (QBF (a0), QBF (a1), . . . , QBF (ah)).

For r and further inputs `′, u1, . . . , uj′ with j′ = 2`′−1, let g′(r, `′, u1, . . . , uj′)
be that string in {0, 1}`′ which represents an i such that

• i is the first number with ui = g(r) if g(r) ∈ {u1, . . . , uj′};

• i = 0 if g(r) /∈ {u1, . . . , uj′}.

Now choose a constant c such that

Cspace(g
′(r, `′, u1, . . . , uj′)|r, `′, u1, . . . , uj′) ≤ c and

Cspace(0
`′|r, `′, u1, . . . , uj′) ≤ c

27



for all r, `′, u1, . . . , uj′ of the form as above. This constant c exists since g, g′

are computable in linear space. Let ` depend on c, k as in Proposition 6.5
and let j = 2` − 1.

The just outlined algorithm is now presented in detail. At the beginning let
m = 1 and y1 = x. Initialize the set V of possible characteristic functions
(QBF (x), QBF (y1)) as {(0, 0), (1, 1)}. Now M runs the following loop until
the algorithm halts; the numbers of steps in the verification below refer to
this algorithm and no longer to the overview at the beginning of this proof.

1. For given m and instances y1, . . . , ym, M chooses 4m instances z1, . . . ,
z4m by replacing in each formula the first two Boolean variables by
0 and 1, respectively. Recall that g(x, y1, . . . , ym, z1, . . . , z4m) is the
5m+ 1-fold characteristic function

(QBF (x), QBF (y1), . . . , QBF (ym), QBF (z1), . . . , QBF (z4m))

and r = (x, y1, . . . , ym, z1, . . . , z4m).

2. Now let W be the set of all strings w ∈ {0, 1}5m+1 such that

• w is an extension of a v ∈ V ;

• w is consistent with the self-reduction from QBF on y1, . . . , ym to
QBF on z1, . . . , z4m;

• w is consistent with QBF (zl) whenever zl does not contain any
variables.

3. While |W | ≥ j, use the oracle f to find an i such that ui 6= g(r) where
u1, . . . , uj are the first j members of W and remove ui from W . This i
can be found by searching for a number where the binary representation
b1 . . . b` satisfies

Cspace(b1 . . . b`|r, `, u1, . . . , uj) > c.

Such an index can be found by Proposition 6.5.

4. If all w ∈ W give the same value for QBF (x) then output this value
and halt. (We say that the algorithm halts with output.)

5. For all different w,w′ ∈ W select one zd(w,w′) such that the compo-
nents of w,w′ at zd(w,w′) representing QBF (zd(w,w′)) are different. If for
some such w,w′, zd(w,w′) does not exist or does not contain at least two
variables, then the algorithm halts without output. Otherwise, replace
y1, . . . , ym by a new sequence of instances y′1, . . . , y

′
m′ which are these

selected zd(w,w′).
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6. Repeat the loop with the instances x, y′1, . . . , y
′
m′ and V being the re-

striction of the vectors in W to these instances x, y′1, . . . , y
′
m′ .

After each third step of every round, W contains at most j binary vectors.
In each fifth step of every round, one selects at most j2 many zd(w,w′) and
thus m′,m are both bounded by 4`. Due to this constant bound, the oper-
ations above can in each single step be carried out in polynomial time with
polynomially many queries to f .

Furthermore, it is easy to verify by induction that whenever the algo-
rithm halts with output, then the output is QBF (x): the reason is that it
is sufficient to show that the vector v = (QBF (x), QBF (y1), . . . , QBF (ym))
is in V whenever the new loop is started. This is true for the initializa-
tion. Assume the same statement now as induction hypothesis at the begin-
ning of the loop. Then the vector w = (QBF (x), QBF (y1), . . . , QBF (ym),
QBF (z1), . . . , QBF (z4m)) is in the list W and never removed from W be-
cause Cspace(w|r, u1, . . . , uj) ≤ c whenever w ∈ {u1, . . . , uj}. Since v ∈ V and
w extends v, the vector w is also in W . Its projection (QBF (x), QBF (y′1),
. . . , QBF (y′m′)) goes into the set V for the next iteration of the loop.

So it remains to show that the algorithm always halts with output, that
is, that it never halts without output what can happen only in the fifth step.
Note that whenever an instance zd(w,w′) is selected such that w differs from
w′ on zd(w,w′) then it has an even number of bound quantified variables which
could be easily verified by induction and this even quantity is not 0 since
otherwise w,w′ would have to be consistent with QBF (zd(w,w′)) due to the
consistency check in the second step. So the only cause could be that zd(w,w′)

is not found and w,w′ coincide on z1, . . . , z4m. Let v, v′ be the restrictions of
w,w′ to the components for the instances x, y1, . . . , ym. If it is the first round
then one of the vectors v, v′ is (0, 0) and the other one (1, 1) so that they
differ on the instance y1. Otherwise there is a previous round and y1, . . . , ym

had been selected in the fifth step of the previous round such that v, v′ differ
on some yk. But now one obtains a contradiction since the consistency check
in the second step enforces that one can compute w,w′ on y1, . . . , ym from
w,w′ on z1, . . . , z4m via the given self-reduction and thus w,w′ would coincide
on y1, . . . , ym. Therefore the instance zd(w,w′) exists and the algorithm does
not halt without output. 2

Theorem 6.7 Let A be any set. Then the following statements are equiva-
lent for A.

(a) A is in PSPACE;

(b) A is polynomial time Turing reducible by a fixed Turing reduction to ev-
ery strong 2-enumerator for the conditional space bounded Kolmogorov
function;
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(c) There is a polynomially bounded function g such that A is polynomial
time Turing reducible by a fixed reduction to any strong 2-enumerator
of g.

Proof: (a) ⇒ (b) by Theorem 6.6 and the fact that QBF is PSPACE-
complete. (b) ⇒ (c) is trivial. For (c) ⇒ (a) consider a set A and a Turing
reduction M which computes A(x) relative to any strong 2-enumerator f
for g. Now consider the following game with two players Anke and Boris
associated with the reduction at an instance x.

On input x, the computation of M relative to f is simulated. Whenever
M asks for the values f y

1 , f
y
2 , Anke and Boris each supply one of them. Anke

wins the game iff M halts with output 0 and Boris wins the game iff M
halts with output 1. If x /∈ A then Anke has a winning strategy by always
supplying g(y): the oracle-answers to every query y contain two values with
g(y) being among them and thus the reduction M behaves as if these answers
are from a strong 2-enumerator f for g. So M returns the value A(x) which
is 0 in this case. If x ∈ A then Boris has the same winning strategy by also
always supplying g(y), this case is symmetric to the previous one and M
returns at the end the value A(x) which now is 1.

So one has for every x a game uniform in x which is played polynomially
many rounds and each round is played in polynomial time. It is well-known
that the problem of which player has a winning strategy for such a game is
in PSPACE. Thus A is in PSPACE. 2

Recall that the class EXP contains all sets which have a decision procedure
using time 2p(n) for some polynomial p where n is the size of the input. This
class can also be characterized as the class of sets A computable in alternating
polynomial space [26, Section 20.1]. Such a characterization is equivalent to
saying that there is a game for A with the following properties:

• x ∈ A iff Anke has a wining strategy for the game starting with a
configuration c(x);

• Every game terminates and either Anke or Boris wins (no ties exist);

• Every configuration in the game starting with c(x) is coded in space
p(|x|) where p is a polynomial;

• For any two configurations (y, z) it can be decided in polynomial space
which of the players Anke or Boris has the right to move at y and
whether this player can move to z.

One can adapt Proposition 6.5 and Theorem 6.6 to the exponential-time com-
putable conditional Kolmogorov function and instances of the EXP-complete
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set SCV . A complete proof is omitted, but a sketch is given by presenting
the basic concepts and intermediate results.

• SCV is the succinct circuit value problem considered by Papadimitriou
[26, Section 20.1]. SCV is the set of all succinctly coded circuits which
are evaluated to 1. Formally, an SCV -instance is a quintuple x =
(e1, e2, 0

a, 0b, 0s) satisfying the following:

– The instance x represents an exponentially sized circuit with 2a

gates and 2b input-bits.

– The program e1 computes for any gate at position u ∈ {0, 1}a

two positions v, w ∈ {0, 1}a lexicographically before u, an input-
position z ∈ {0, 1}b and a formula φ such that the value of the
gate at u is φ(v′, w′, z′) where v′, w′ are the values of the gates at
v, w and z′ is the value of the zth input-bit.

– The program e2 computes z′ from z for every z ∈ {0, 1}b.

– The programs e1, e2 have space bound s on all legal inputs.

SCV is now the set of all SCV -instances where the gate with position
11 . . . 1 is evaluated to 1.

• Let g compute for any SCV -instance, for anym and for anym positions
in the circuit a vector in {0, 1}m which contains the values of these gates
of the circuit in this instance. There is a polynomial p such that the
function g can be computed in time 2p(n+m) where n is the size of the
instance and m the number of the gates given in the input.

• With queries to any strong 2-enumerator for the exponential-time com-
putable conditional Kolmogorov function one can compute in polynom-
ial space a list L such that the number of members of L is polynomial
in m and L contains the value of g at the given input. The same can
be done for the function g′ constructed from g as in Theorem 6.6.

• One can adapt Theorem 6.6 to show that SCV ∈ PSPACEf whenever f
is any strong 2-enumerator of the exponential-time computable condi-
tional Kolmogorov function. The number of rounds is exponential and
not polynomial as in Theorem 6.6 but the number m of components in
the considered vectors is again bounded by a constant. Therefore the
polynomial bound on the space usage is kept.

These results can be put together to yield the following theorem.

Theorem 6.8 The following statements are equivalent for every set A.
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• A is in EXP;

• A is in PSPACEf by a fixed machine where f is any strong 2-enumer-
ator for the exponential-time computable conditional Kolmogorov func-
tion;

• There is a polynomially bounded function g and a fixed machine wit-
nessing that A is in PSPACEf where f is any strong 2-enumerator
for g.

Note that Theorems 6.7 and 6.8 can also be stated with any constant k ≥ 2.
A detailed analysis shows that even a slowly growing non-constant function
k is possible. But 2`(n) always has to be polynomially bounded, thus only
functions where k(n) ≤ log log(n) can be considered.

And even this bound requires that the algorithm in Theorem 6.7 and
the g′ there be adapted: instead of eliminating single possible solutions from
L, one has to eliminate intervals so that g′ takes an interval of strings and
not a single string as its value. Then one would have to apply an iterated
elimination of a non-desired interval and splitting of the largest remaining
one until only 2` − 1 many intervals of size 1 are left.

The next section deals with the question of what statements can be made
for faster growing k.

7 Space Bounded Kolmogorov Complexity

In this section we show how to solve any PSPACE-complete problem given
nondeterministic access to an O(log n) enumerator for the conditional space
bounded Kolmogorov complexity.

Theorem 7.1 If k(n) ∈ O(log n) and f is a strong k(n)-enumerator for
Cspace(x | w, |x|) then PSPACE ⊆ NPf .

Our proof builds on the work of Buhrman and Torenvliet [7] who show that
the interactive proof (IP) protocol for PSPACE [24, 28] can be simulated by
an NP-oracle machine that has access to a set of space-bounded Kolmogorov
random strings. The NP machine in the proof guesses a sequence of polyno-
mials and a sequence of numbers of space-bounded complexity greater than
some fixed constant that are used to generate the proof in the IP protocol.

Theorem 7.2 (Buhrman-Torenvliet) There is a constant m such that
PSPACE ⊆ NPg for all functions g(w, 1n) that outputs a string x of length
at least n with Cspace(x | w, |x|) > m.
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Given a strong k(n)-enumerator f for the space bounded conditional Kolmo-
gorov function we show how to create a g that nondeterministically reduces
to f and fulfills the conditions of Theorem 7.2. Theorem 7.1 immediately
follows.

Lemma 7.3 If k(n) ∈ O(log n), f a strong k(n)-enumerator for Cspace(x |
w, |x|) and m is a constant then there is an NP oracle machine M such that
M f on input 〈1n, w〉 can guess and verify a string x of length at least n such
that Cspace(x | w, n) ≥ m.

Proof of Lemma 7.3: Without loss of generality we assume m is greater
than the constant-size programs described in this proof.

Fix w and a large n and let k = k(n). We assume the enumerator f on
input x will give us a list fx

1 , . . . , f
x
k ordered such that fx

i < fx
j whenever

i < j.

We create our machine M f that acts as follows:

• Guess an integer `, 0 ≤ ` < k.

• If ` = 0, guess a string x of length n such that fx
1 > m. If so output x

and halt.

• Otherwise nondeterministically guess an a set S ⊂ {0, 1}n of size 2lm−m

such that for every x in S, fx
` < 2`m−m and fx

`+1 ≥ 2`m+m. Let z
be the concatenation of all of the strings of S and output z and halt.
Note the length of z is bounded by a polynomial in n.

• If no such string or set is found then halt and reject.

We need to show that M f always has an output path and that every possible
output is a string with C(x|w, |x|) ≥ m.

IfM f does not have any output paths then there are at most a polynomial
number of strings x of length n with fx

k ≥ 2km−m. But this contradicts the
fact that at least 2n−1 strings must have fx

k ≥ Cspace(x | w, |x|) ≥ n − 1 >
2km−m for large n.

If M f accepts with ` = 0 we have Cspace(x | w, |x|) ≥ fx
1 ≥ m.

SupposeM f accepts with ` > 1 and Cspace(z | w, |z|) < m. Since there are
not enough small programs, one string x in S must have Cspace(x | w, |x|) >
2`m−m = fx

` and thus Cspace(x | w, |x|) ≥ fx
`+1 ≥ 2`m+m. We can describe

m by z and the index of x in z, a total of 2`m + O(1) bits, a contradiction
for sufficiently large m. 2

We can try to extend the above results by
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1. Strengthening the reduction type in Theorem 7.2 to deterministic poly-
nomial time

2. Weakening the enumerator to f(n) where f(n) is some function between
log n and n.

In the following theorem we create a relativized world that may indicate
that these extensions maybe hard to find. However, note that the proof of
Theorem 7.2 by Buhrman and Torenvliet [7] depends on IP = PSPACE and
thus does not relativize.

Theorem 7.4 There is a relativized world where Cspace is polynomial time
log2(n)-enumerable but not polynomial time computable; here n = |x| + |w|
when Cspace(x | w) has to be computed.

Proof: Start with a relativized world where P = PSPACE. Let b0 = 1
and bm+1 = 2bm for all m. Now add an oracle A satisfying the following
conditions:

• A is in EXP relative to the given world;

• If n /∈ {b0, b1, . . .} then A ∩ {0, 1}n is empty;

• For every m, the intersection A∩{0, 1}bm contains exactly one element
xm;

• Only the last h(bm) bits of xm can be different from 0 where h(n) =
log(n)·log(n)

log log(n)
;

• There is no sparse set in PSPACE which contains infinitely many xm.

Note that PSPACEA 6= PA in the given relativized world since one can com-
pute the partial function 0bm → xm in PSPACEA but not in PA.

Since P = PSPACE (without oracle A) one can compute Cspace. Of course
CA

space(x | w) ≤ Cspace(x | w) + c1 for some constant c1. On the other
hand, if UA(p, w) = x one knows that there is a further machine V with
V (vp, w) = UA(p, w) where v is the last h(bm) bits of xm for the largest m
where |xm| ≤ 2 · (|p| + |w|). Note that the computation of UA(p, w) cannot
access the oracle A at strings longer than 2 · (|p| + |w|). Then one knows
that a program p′ with U(p′, w) = V (vp, w) is at most c2 bits longer than
|vp| and Cspace(x | w) ≤ CA

space(x | w) + c2 + h(2 · (|x| + |w|)) ≤ CA
space(x |

w) + c3 + 3 · h(|x|+ |w|) for a suitable constant c3. This gives that

Cspace(x | w)− c3 − 3 · h(|x|+ |w|) ≤ CA
space(x | w) ≤ Cspace(x | w) + c1

and CA
space is (3 ·h(n)+ c1 + c3 +1)-enumerable. If n is sufficiently large, this

expression is below log2(n). If n is not large enough, one can get CA
space(x | w)

from some table. Thus CA
space has a PA-computable strong log2(n)-enumer-

ator although PSPACEA 6= PA. 2
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