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Abstract

We present a complexity-theoretic proof of the result of P.Gacs and J.K&rer on the existence
of a pair of words whose common information can not be materialized. Our method is easier
than Gécs and Kdmer’s method and gives a possibility to get some generalization of the result.
Besides, we show that there are many enough pairs of words with this property. (¢) 1998 —
Elsevier Science B.V. All rights reserved
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1. Introduction

The results of the present paper were announced in [3].

In paper [2] Kolmogorov gave the definition of the entropy K(x) of finite object x
and the definition of the quantity of information /(x : y) about y contained in x. In [4]
it was proved that the quantity of information is commutative to within an additive
term of O(log K(x) + logK(y)) (all logarithms in our paper have base two). In that
paper it was also proved that

H(x:y)—(K(x)+ K(y) — K(x, y))| = O(log K(x) + log K(y)).

Because of commutativity of [(x : v) we will call I(x : v), I(y : x) and K(x) +
K(y) — K(x, y) the quantity of common information of x, y.

My father, A.A. Muchnik, raised the following question: is there a word z such
that K(z) = I(z : x) = I{(z : y) = I{(x : y)? That is, can we materialize the com-
mon information? As /(x : y) is commutative only to within an additive term of
O(log K(x) + log K(y)) the exact formulation of this question is the following.

The problem of A.A. Muchnik. Is the following assertion true?
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For some constant ¢ for all binary words x, y there is a binary word z such that

K(z)<I(x: y) + c(log K(x) + log K(y)) + ¢,
I(z:x)=1(x: y)—c(logK(x) + logK(y)) — ¢, (1)
I(z:y)=I(x:y)—c(logK(x)+ logK(y)) —c.

In paper [1] Géacs and Korner gave a negative solution to this problem. They used
probabilistic methods. In the present paper we present a complexity-theoretic solution
to the problem of A.A. Muchnik, which is easier than Gacs and Korner’s solution.
We are interested also in the following generalization of the question. Let us fix the
parameters m,n,a,b,i € N such that a<m, b<{n, i<m, i<n.

What is the minimal 4 such that for every words x, y which have, respectively, the
entropies m, n and the quantity of common information i there is a word z such that
K(z)<d, I(z :x)=a, I(z: y)=b? We can easily prove that

d<a+ b+ 2(logm + logn) + const.

It turns out that this upper bound is tight (to within an additive logarithmic term) if
m=a—+1i, n=2b+ i (Theorem 2).

We are also interested in the following question: for how many x, y there is no
z such that the assertion (1) is true? We give the following answer. Let us fix some
value of ¢ in (1). Then for all sufficiently large » for all x if K(x)>=n then there is y
such that K(y) is equal to K(x) to within an additive logarithmic term and such that
there is no z satisfying (1) (Theorem 3).

2. Basic definitions

Let us denote by = the set of all binary words. Let us denote the length of a word x
by /(x). Let us call any partial computable function f: & — = the specifying method.
We call the word p a description of x (with respect to f) if f(p)=x.

The complexity K,(x) of word x with respect to the specifying method 1 is defined
as

Ky(x) =min{l(p) | f(p) = x}

and K(x) = oo if there is no p such that f(p) = x. We say that specifying method
f 18 no worse than a specifying method g if there is some ¢ € N such that for all
x €& Kp(x)<Ky(x)+c. The well known theorem of Solomonoff-Kolmogorov states
that there is an optimal specifying method, that is a method which is no worse than
all other ones. Let us fix some optimal specifying method and denote it by fg. Let us
denote K(x) = Ky, (x). We call K(x) the entropy of x. Obviously, for some constant
¢ all x satisfy the inequality K(x)<I(x) + ¢. Therefore, K(x) < oo for all x.
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In the above inequality, ¢ denotes a constant in the following sense: ¢ doesn’t depend
on x but ¢ depends on the choice of f. In our paper there are also absolute constants.
We will give absolute constants explicitly.

Let g: & x & — E be partial computable function. The complexity K, of x, with
respect to ¢, conditional to y is defined by

Ky(x|y) = min{l(p) | g(p, y) = x}.

—
=

Among all partial computable functions g: £ x & —- Z there is an optimal one, that
is a function g such that for all 4 there is a constant ¢ € N for which K,(x|y) <K, (x|y)+
c for all x, ¥ € Z. Let us fix some optimal g and denote it by go. We define K{x|y) =
K, (x|¥). Let us call the difference

I(x: y) = K(y) — K(plx)

the quantity of information about y contained in x.

Let us define some convenient coding of pairs of binary words. Let x be a word,
x = biby...b,, b; € {0,1}; denote by % the word bib1b2b,...bsb,01 (for example,
010 = 00110001). Obviously given fy we can find both x and y. Let us denote K(%y)
by K(x,y). The well known theorem ([4]) states that there is ¢ € N such that for
every x,y € =

|K(x, y) — (K(x) + K(y|x))| <5(log K(x) + log K(¥)) + c.

This yields
(x: y) — (K(x) + K(y) — K(x, y))| <5(log K(x) + log K()) + ¢,
((x 2 ¥) = 1(y:x)|<10(log K(x) + log K(y)) + ¢1.

Let us denote for the sake of convenience (K(x) + K(») — K(x,y)) by I(x : v). We
will write @ =, b instead of |a — b| < c.

3. The results

Let a,b € N; x,y € E. Let Cyup(x,y) = min{K{(z) | I(z : x)=a, I[(z : y)=b}. The
following simple theorem yields upper and lower bounds for C,(x, v). By m,n,i we
denote respectively K(x),K(y),I(x : y).

Theorem 1. There is a constant ¢ € N such that if m>a+ ¢, n=b+ ¢ then
max{a,b,a+b —i} — 40(logm + logn) — ¢

< Cup(x,y)<a+ b +2(logm + logn) + c.

Proof. We will denote in this proof as well as in others proofs by ¢y, ¢3,... constants
depending only on the choice of fy, go. The value of ¢ will be clear from the proof.
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Let us prove first the lower bound of C,p(x, y). We have to prove three inequalities:

a —40(log K(x) + log K(y)) — ¢ < Cap(x, ¥),
b —40(log K(x) + log K(3)) — c < Cppl(x, y),
a+b—1I(x:y)—40(logK(x) + log K(»)) — ¢ < Cop(x, »)-
The first two inequalities follow from the well known inequality K(x)<K(x|z) +

K(z)+2logK(x) + ¢, i.e. K(z)=1(z :x) —2logK(x) — c;.
Let us prove the third inequality. This inequality follows from the inequality

K@)2I(z :x)+1(z: y)—I(x : y) — 40(log K(x) + log K()) — .

Let us prove this inequality. Note that we can take as z the pair (x, y). Therefore
K(z)<K(x)+ K(y) + 2log K(x) + ¢;. Since the function log is concave, this implies
that log K(z) <2(log K(x) + log K(¥)) + ci. In the next proof we will omit additive
logarithmic terms.

Iz :x)+I(z:y)—I(x: y)=K(x)+ K(z) — K(x,2) + K(y) + K(2)
—K(y,z) = K(x) — K(y) + K(x,»)
=2K(z)+ K(x,y) — K(x,z) — K(¥,2).
As K(x,2) = K(x|z) + K(z) we get
K(z) + K(x,y) — K(x,2) — K(y,2) = K(x,y) — K(x|z) — K(3,2)
< K(x,y) — K(x[yz) - K(yz)
= K(x,y) — K(x, yz)<0.
Thus to within an additive logarithmic term
I(z:x)+1(z: y)—I(x: y)<K(2).

Now let us prove the upper bound of C, ;. Clearly, we can take as z the concatenation
of a first bits of the shortest description of x, b first bits of the shortest description of
y and I(a) (I(a) stands for i, where u is binary representation of /(a)).

The theorem is proved.

It is easy to prove that the lower bound in Theorem 1 is tight (to within an ad-
ditive logarithmic term). Indeed, let m>a, n>2b, m=i, n=i. Let us define words x,
y such that K(x) =m, K(y)=n, I(x 1 y) =i, Cop(x,y) = max{a.b,a + b — i} (fac-
tors of logarithmic length in words and logarithmic terms in numbers are omitted in
the following reasoning). Let a>=b. Let us take random mutually independent words
p, g, r with lengths respectively i, m — i, n — i, i.e. K(pl|gr) =i, K(g|pr)=m —i,
K(r|pg) =n —i. Let x = pgq, y = pr. We consider two cases.

(1) aza+b—1i, ie iz=h.

Let z be the beginning of x of length 4. Then /(z : x) = a. If i > a then z is beginning of
y consequently I(z : y) =a=b. If a=i then z begins with p therefore I(z: y) =i=b.
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2Ya+b—-iza,ie b=i.
Let z be equal to pgi71, where g, r| are respectively the beginnings of ¢, » of lengths
a—i,b—i. Then Kz)=i+a—i+b—i=a+b—-i [z x)=i+a—i=a,
z:y)y=i+b—i=0b.

The following theorem shows that the upper bound in Theorem 1 is tight if m > a -+,
nzhb+i.

Theorem 2. There is a constant ¢ € N such that the following holds. For every m,
n, a, b, i such that m=i, nzi, m=a, nzb there are x, v such that K(x) =, m,
K(y) =cn, [I(x : ) —i|<5(logm +logn)+c, Cop(x,v)= max{a,b,min{a+n—i b+
m—i,a+b}} — S(logm + logn) — c.

Proof. Let m, n, a, b, i satisfy the inequalities m>=i, n=i, m=a, n>=b. Let us denote
k=min{a +b.a+n—i,b+m—i}.

It is easy to see that C,,(x, y)=a — 3(logm + logn) — ¢ and
Cap(x,y)=b — 5(logm + logn) — c. So we have to prove that C,p{x,y)=k — ¢ for
appropriate c.

We will define two words x and y satisfying the conditions of the theorem. The
words x, y must be such that there is no z such that K(z)<k —c¢, I(z : x)=a, [(z:
v)=b. The last two inequalities means that K(x|z)<K(x) — a, K(ylz)<K(y) — b.

Let ¢, stand for the constant such that K(u)</(u) + ¢, for all u € Z. Let us define

M= {(x,€EEXE|TZeZKE)<k—c.Kxlz)ysm+ ¢ —a,
K(y|lz)<n + ¢ — b},
My = {(x, )| I(»)=n, K(x) <m-2},
Ms = {(x.9) | I(x) = m, K(y) < n—2},
My = {0, y) | K(x,y) <m+n—i-—-2}
We claim that for sufficiently large ¢ € N the inequality |M, UM, UM; U My| <
2"" holds. To prove this claim we will estimate |M;|, |M2|, {M3], |M4|. Remember

the following well known inequalities |{x € = | K(x)</}| < 2!*!, ¥y € Z|{x € |
K(x|y)<!I}| < 2'*!. These inequalities yield

Ml < ¥ o) | K& Sm+er —a, K(yl2)<n+c¢ — b}
i K(zysk—c

f — 1 —a+1 N —b+1 c—a—b)+2¢1+3—¢
<21\ c+1 .2m+q a+ _2n+1| b+ :2m+n+(k a—b)+2¢1+3—¢
<2m+n+2(‘|+3—c (as k<a + b),

|M2I < 2m—2 . 2r1 — 2m+nf2’ LMB

|M4‘ < 2m+n\i72 <2m+n—2

< 2m . 2n—2 — 2m+l142

Therefore, if ¢=2c¢; + 5 then |M| UMy U M3 UMy < 2™t" Hence there is a pair
of words x, y such that I(x) =m, I(y)=n and (x,y) ¢ M, UM, UM; UM, Let us



324 An.A. Muchnik | Theoretical Computer Science 207 (1998) 319-328

take the first pair (x, y) with these properties. We claim that if ¢ is large enough then
(x, y) satisfies all requirements.

The conditions |K(x) — m|<c, |K(y) — n| <c are satisfied because (x, y) ¢ M, U M;
therefore

m=-2<Kx)<l(x)+c =m+cy, n=2<K(p)<l(y)+c=n+c.

As (x, y) ¢ M; there is no z such that K(z)<k—c and K(x|z)<m+c)—a, K(y|z)<n+
¢1 —b. We know that K(x)<m + c¢;, K(y)<n+ c;. Therefore there is no z such that
K(z)<k —c and K(x|z)<K(x) — a, K(y|z)<K(y) — b.

It remains to prove the difficult assertion

[I(x : y) —i|<5(logm + logn) +c.

The upper bound of I(x : y) is easy: K(x)<m + ¢, K(y)<n+c1, K(x, y)z=m +
n—i—2 (as (x,y) ¢ My) therefore

Ix:y)s<m+ci+n+ci—(m+n—i—2)=i+2c; +2<i+c.

Now let us estimate I(x : y) from below. We have to estimate K(x,y) by the
quantity about m + n — i. The main idea is the following: every finite set M can be
specified by its cardinality [M| and by an algorithm 4 which generates all elements of
M (and only them). Indeed, given 4 we can generate the elements of M until we get
|M| different elements.

So let us estimate K(x, y). To specify (x, y) it is sufficient to specify m, n and M,
M,, M5, My. To specify M| it is sufficient to specify the set I'1 = {(p,u) | { p)<k—c,
fo(p) =u} and the set I'; = {(p,z,u) | go(p,2) = u, I(p)< max(m — a,n — b) +cy,
K(z)<k—c}. To specify My, M3, M, it is sufficient to specify m —2, n —2, m+n —2
and the set I's = {(p,u) | fo(p) =u, {(p)s<m+n—i—2} (because m +n —i=m,n).
To specify I'y, I'5, I'; it is sufficient to specify I'=I' 1 UT', UT'3 and m, n, a, b, i, c,
¢1. Moreover, to specify I'y, Iy, I's it is sufficient to specify |I'| and m, n, a, b, i, ¢, c;
because given m, n, a, b, i, ¢, c; we can generate the elements of I'. Therefore there
is a specifying method which on the input m#aab icé||I'| outputs (x, y). Consequently,

K(x,y)<2(logm+logn+loga+logh+logi)+2loge + 2loge; + log|I'| + 2
<5(logm + logn) + 4logc + log || + c.
Let us estimate |I'|. The number of words of length </ is less than 2/*!. Therefore
|I—v2| < 2k—c+1 . 2max(m—a,n—b)+c1+l — 2max(k+m—a,k+n—b)—c+cl+2
< 2m+n—i—c+cl+2
(the last inequality holds because k<a+nrn —1i, k<b+m — i),
|F3| < 2m+n—i—1 'FII < 2k—c+1 <2a+n—i—c+l <2m+n—i—c+l.

Therefore if ¢ > ¢; + 1 then |I'y], ||, |T3] < 2™+~ consequently |I'| < 2m+n—i+3,
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Hence

K(x,y) < 5(ogm+logn)+4logc+m+n—i+3+cy,
I(x:y) >m—24+n—2—-"5Ilogm+logn)—4logc —m —n+i—3 —¢,
=i—5(logm+1logn)—4loge —7— .

Let us take ¢ € N such that ¢ > 4logc + 7 + ¢». Then we have proved the desired
lower bound of /(x : y). The theorem is proved.

Let us deduce from Theorem 2 negative solution of A.A.Muchnik’s problem. Let us
fix some constant ¢ in assertion (1). We will call a pair (x, y) bad if there is no z
satisfying (1). We claim that there is bad (x, y) with arbitrary large K(x), K(y) and
arbitrary ratios I(x : y)/K(¥), I(x : y)/K(x) belonging to the interval (0, 1).

Corollary. Let 7,0, € R satisfy inequalities 0<a,<1 and 0 <y < 2,8 Then
Jor some c for all sufficiently large j € N there is a bad pair (x;,y;) such that
K(x;) =c o j, K(y;)=¢ B-7, 1(x; : ;) =1010gj4c 7 J-

Proof. Let us take ¢ > 0. Define b = a = (y —¢)j, m = oj, n = fj, i = yj. Obviously
we can choose ¢ so small that for all j

(y+¢&) <min{a+ba+n—ib+m—i}
=min{y —e+y—¢ey~e+f—py—eta—y}J
By Theorem 2 there is a pair (x;, y;) such that

K(x) = aj, K(y;) = BiI(x; 1 ¥;) =1010g )4 V)
Co—erity—0i(x;, 1) 2 (y + 6)j — 10log j — c.
Evidently for sufficiently large j the pair (x;, y;) is bad.

Theorem 3. There is a constant ¢ such that the following holds. For every x € E for
every a<K(x) there is y € £ such that

K() =410 k(x)+e KX, I(x 1 ¥) =610g k(xy+e 3K(X),
Coalx,¥)=3a — 4logK(x) — c.

Proof. Let us fix some x; € & and some ¢ € N such that a<K(xy). Denote n =
K(xg). It is well known that for every / € N there is a prime number p in interval
[(LI+1,...,2]].

Take the least prime pe2l%1 As p<2(%1“, we have 277! < p? <274,

Consider the following bipartite graph I';. We will call the vertices from the first
part “left vertices” and the vertices from the second part “right vertices”.

The set of left vertices is Z, x Z,, where Z, stands for the field of residues modulo
p. The set of right vertices is an another copy of Z, x Z,. Each left vertex (q,r) €
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Z,xZ, is connected with p right vertices (q+1i,r +qi), i € Z,. Let us prove that I';
has no closed cycles consisting of four edges (we will call such a cycle “4-cycle”).

It is sufficient to prove that if (v;,v;) and (v, v3) are edges and v, # v; then given
vp, U3 we can find v;.

Let vy = (g,7), v2 = (g + i, ¥ + qi), v3 = (¢ + j,¥ + qj). Then given vz, v; we can
find i —j and g(i—j). As Z,, is field we can find ¢. From ¢ and g +/ we can compute
i. From r + gi and gi we can compute r.

Furthermore, one can easily verify that for each right vertex v there are exactly p
edges incident to v.

Now we will mark left and right vertices with binary words and delete some left
vertices. Let us mark 7th right vertex with ith word of length » + 4 (we assume that
some computable well ordering on words and vertices is fixed).

We will mark left vertices with the words of entropy <n as follows. Let us begin
to generate the words of entropy <n. The ith generated word marks the ith vertex. As

xeE|Kx)sn} <2"'<|Z, x Z,|,
» P

this is possible. Then we delete all unmarked left vertices. We will denote by I'; the
marked graph obtained by this procedure. Note that we can not compute I'; given n
because we do not know at which moment the last word x with K(x)<n is generated.
Nevertheless there is a procedure which given » generates all edges of I, with their
markings. We will say “left vertex x” instead of “left vertex with marking x” and for
the right vertices also.

Our plan is as follows. We will construct subgraphs M; of the graph I'; (d €
N). There will exist an algorithm which given s, @, d generates all edges of My
and only them. Cardinality (i.e. the number of edges) of M; will be not greater
than 23n—4legn—d+e: (¢, is a constant; ¢;, as earlier, will be the constant such that
YuK(u)<Il(u) + cp).

Further, M will be the set of those left vertices which are incident to edges only
from M,. Then |M)| <|M,|/p<2r—*len—d+e: For M), like it holds for M, there will
be an algorithm generating on n, a, d all vertices of M, and only them. In the same
way as in the proof of Theorem 2, it will follow from the previous conditions that

Vx € M) K(x) <2logn+2loga+2logd + log |M}| + c3
<4logn+2logd +n—4logn—d+cys=n+2logd —d + cs.

Choose d so large that 2logd —d + ¢4 < 0. Then x € M) = K(x) < n, thus
xo ¢ M. Therefore there exists yo € E such that (xg, yo) € I'; and (xo, yo) & M.

Let us turn to defining of M.

Let E’ be the set of all edges (x,y) € I', such that K(y) < n — 4logn — d. Since
each vertex is incident to no more than p edges, we obtain |E|< p2r—*loen—d <
23+29n—4logn—d _ 2%n—4logn—d+2‘

Let E” be the set of all edges (x, y) € I'; such that K(x,y) < 3n—4logn —d. This
implies that |E”/| < 23n—4legn—d



An.A. Muchnik | Theoretical Computer Science 207 (1998) 319-328 327

For any z € & we define I'” to be the subgraph of I'; consisting of all vertices (left
and right) y such that K(yjz)<n-+4+c; —a, and of all edges between these vertices.
The left and the right parts of I'* consist of less than 2"+5+¢—@ vertices. Let us deduce
from this an upper bound of the number of edges of I'*. Note that I has no 4-cycles
as a subgraph of I'}.

Lemma. If a bipartite graph has no 4-cycles and the number of vertices in both parts
does not exceed m then the number of edges in the graph does not exceed m>* +2m.

Proof. Let the left vertices of the graph be integers 1,2,...,m. Let us denote by &; the
number of edges incident to the left vertex i.

Let M; be the set of all nonordered pairs (j,q), where j and ¢ are right ver-
tices connected with /. Then |M;| = k—(fziﬁ As the graph has no 4-cycles the sets
M,,....M,, are pairwise disjoint. As |J", M;| <im(m — 1), we can conclude that
S Skitki — 1)<im(m —1). Let us deduce from this inequality the inequality
S k<m?? 4 2m,

Repeat till this is possible the following transformation with the vector (k,...,4,):
pick k; and k; such that k;<k; — 2 then decrease k; by 1 and increase k; by 1.
After performing this transformation %"  k; is not changed and 7" ki(k; — 1) is
not increased because the function r(» — 1) is convex. Therefore the inequality

m

i=1

remains valid.

Finally we get a vector consisting (for some &) only of numbers k& and £+ 1. Because
(2) we have mk(k — D<m(m — 1); k(k = D<m — 1; k< /m + 1.

Hence Y7 ki <(k+ D)m<m(y/m+2). O

It follows from the lemma that the number of edges of the graph I'* does not exceed
2%(n+5+(‘| —a) + 211+6+c1 —a <2%(M7£1)+C5 .

Let E' be the set of all edges (x, y) € I'» for which there exists z € Z such that
K(z) < 3a—4logn —d and (x,y) € I*. We have

|E"] < > (number of edges of I'*)
zK(z)< 3a—4logn—d

<2%a74logn7d '2%(n-a)+c5 _ 2%‘n—4logn~d+c5
~ - = — - .

Let My = E/ UE” UE". First, the existence of algorithms generating the graphs
E', E", E" given n, a, d is evident. The same statement is true for M;. Second,
‘Md; <|E/| + |E//| + |E///| Sz%n74lognfd+q‘

Now let us verify that the edge (xo, o) satisfies the conditions of the theorem being
proved.

L K(yo))<l(y)+c =n+4+c.

II. (x0,¥0) € E’, consequently K(yo)=n —4logn —d.
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Iv.

M(x0 : y0) = K(x0) + K(»0) — K(x0, y0). As (x0,y0) ¢ E", we have K(xo,y0)>
%n —4logn — d. This implies I(xo : y)sn+m+4+c)— (%n —4logn—d) =
5 +4logn +cs.

The graph I'; is specified by the number n, and the number of its edges is equal to

p°. Therefore, the entropy of each edge does not exceed 2 log n+log p*+c7. Thus,

K(xo,yo)s%n+2logn+c8; I(xg : y0)>n—|—(n—410gn—d)—(%n+210gn+cs) =

7 —6logn—cy.

. IFK(z) < %a —4logn —d then (xp, yo) ¢ E"” = [K(x0lz) > n+4+c¢; —a or
K(yol|z) > n+4 +c) —a]. Assume K(w|z) > n+4+c, —a, then I(z : y) =
K(y)—K(pwlz) < (n+4+c))—(n+4+c —a)=a. The argument for xp is
similar. From this it follows that C,,(xo, yo)= %a —4logn—d.

The theorem is proved.

Let us apply Theorem 3 to arbitrary x and to a = %K(x). Obviously, for sufficiently

large K(x) for the pair (x, y) there is no z such that (1) holds.
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