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ON THE BASIC STRUCTURES
OF THE DESCRIPTIVE THEORY OF ALGORITHMS
UDC 517.11

AN. A. MUCHNIK

The question has previously been raised (see for example [1] and [2]) as to what
constitutes the object of study in the theory of algorithms, and what the basic methods
of proof are in this theory. In this connection the phenomenon of relativization has often
been discussed. In this note we try to give a partial answer to the above questions, and
to furnish mathematical assertions which support the proposed answers. Here we will
only deal with the descriptive, qualitative, theory of algorithms, leaving aside the metric,
quantitative, theory of algorithms (complexity theory).

A number of authors have expressed the point of view which considers the theory of
algorithms to be the theory of a single universal algorithm (see [2]). Theorem 1 below
provides precise mathematical confirmation of this thesis.

As the consideration of partial functions is a central feature of the theory of algorithms,
we will also consider structures (algebraic systems) with partial operations, without any
special proviso. We will denote by f, the function Ayf(z,y), i.e. the unary function
obtained by fixing the first variable in f(z,y).

Let F(z,y) be some primary (Godelian) universal function (see [3]). Then the pair
(N; F) will be called a computation structure.

THEOREM 1. All computation structures are isomorphic.

We remark that in Theorem 1 it is of course unnecessary to require that the underlying
set of the structure be the natural number sequence N. Its role may be taken over by
any “ensemble” of constructive objects (see [2]).

PROOF OF THEOREM 1. Let (N;F) and (N;G) be two computation structures.
The theorem asserts the existence of a bijection h: N — N such that

F(z,y) = 2 & G(h(z),h(y)) = h(2).
In other words, for every = in IN, necessarily
Fy = h—-l o Gh(az) o h.

Suppose that we have an arbitrary computable bijection k. Then the function H for
which H, = h~! 0 Gz o h is a primary universal function. According to a theorem of
Rogers on isomorphism of Godel (primary) numberings (see [4]), there is a bijection k
such that Fy = Hy(z) for all z. In other words F, = h™1o Gr(z) © h. We will use the
fixed point theorem to get k coinciding with h.

In order to make it actually possible to apply the fixed point theorem we will refine
the construction occurring in Rogers’ theorem in such a way that the bijection k is
constructed for every computable function h (not necessarily bijective). If h is indeed a
bijection then k will have the required properties.

Construction of k from h. It is easy to see that from h we can effectively construct
a certain function ¢ which turns out to be the inverse of h if h is bijective. As F' and
Gare primary numberings, it is possible to find completely defined computable functions
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u and v for which
Fu(x)——‘iOGmOh, Gv(m)“—‘hOFmOi.

We construct a computable bijection k for which k(m) = n implies that either F, =
10Gmohor Gy = hoF,o1 (if his a bijection then 7 and h are mutual inverses,
and the equalities are equivalent). As in Rogers’ theorem the bijection k is constructed
in stages. At even stages we define k(m) for some m not yet contained in the domain
of k. At odd stages we define k~!(n) for some n not yet contained in the range of k.
Specifically, we take k(m) = u(m) if u(m) is not found among the values of the function
k which have already been defined, and otherwise we find a value of n which does not
occur among these values, and for which F,, = Fy,(,,). This can be done, since for any
index of a function in a primary numbering it is possible to effectively find arbitrarily
many indices of the same function. In a similar fashion k~!(n) is defined as v(n) or any
other m for which Gy, = G, (m) and for which k is not yet defined. Thus the bijection &
is constructed.

If the initial function h is bijective, then ¢ = h=! and Fy(y) = h~1 0 Gy 0 h, as was
required. Now an application of the fixed point theorem completes the proof of Theorem
1.

The question naturally arises: what will happen if in Theorem 1 we consider relative
computability in place of computability? It turns out that all structures corresponding
to a single oracle (or equivalent oracles) are isomorphic. In other words, Theorem 1
relativizes.

The definition of the notion of A-computation structure is obtained from the definition
of a computation structure by replacing computability by computability with the oracle
A.

It can be shown that for noncomputable A, the A-computation structures are neither
isomorphic nor even elementarily equivalent to computation structures without oracles.

Let ® be a property of structures of the signature under consideration (with a single
binary partial function; we consider only properties which are invariant under structure
isomorphism). Then in view of Theorem 1, for each oracle A, ® is either true for all
A-computation structures, or false for all such. Thus three possibilities arise:

1. ® is true for A-computation structures for all A;

2. ® is false for A-computation structures for all A;

3. @ is true for some A-computation structures and false for others, with different A.

In cases (1) and (2) ® is naturally called a relativizably true or relativizably false
property, and in case (3) a nonrelativizable property. It turns out that the majority of
natural assertions in the theory of algorithms refer to relativizable properties. We will
now see that it is possible to distinguish the relativizably true propositions from the
relativizably false ones without appealing to the notion of computability. For this we
need a game, which we will now define:

The Game. Two players take part in the game: Nature (player N) and Mathematician
(player M). Each player gradually constructs a structure of the form (N;F), where F
is a partial function from N x N to N. (Here any countable set may be used in place of
N. The structure of N is not used.) At the start of the game F' = @. At each stage the
definition of the function is extended to finitely many points. Previously defined values
of the function may not be altered. The players make their moves alternately. Thus the
rules of a move are always the same, and the possible moves do not depend on the oppo-
nent’s moves. The difference between concrete plays is determined by a payoff function
(which, as we will see, corresponds to the property whose truth Mathematician wishes to
establish). Let ® be a fixed property of structures of the class under consideration. Then
in the ®-game, Nature wins if she has constructed a function v, and Mathematician has
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constructed a function p such that:

(WN1) @ is false in (N, v), and

(WN2) There is an integer e such that v, is completely defined, and, for all z, pz =
Vy, (z)*

As we see, only condition (WN1) depends on the property @, but it does not depend
on u. Condition (WN2) means that the numbering of unary functions constructed by
Mathematician is reduced to the numbering of unary functions constructed by Nature,
where the reduction function is itself also constructed by Nature.

The following assertion makes it possible to distinguish the relativizably true proposi-
tions from the relativizably false ones in terms of the game described: If ® 15 relativizably
true then there is a winning strategy for player M; if ® is relativizably false,, then there
is a winning strategy for player N.

This assertion follows from the following theorem.

THEOREM 2. The following equivalences hold, where B 1s an arbitrary subset of the
natural numbers, and B <p A denotes decidability of B relative to A.

(a) Property ® 1s true for all A-computation structures for which B <r A if and only
if there s a winning strategy for M in the ®-game which is computable relative to B.

(b) Property ® is false in all A-computation structures for which B < A if and only
if there 1s a winning strategy for N in the ®-game which is computable relative to B.

The proof of Theorem 2 will be given for decidable B; its relativization to arbitrary
B proceeds in the usual fashion. We consider the following computable strategy (which
may be used by either M or N): “Watch your opponent’s play. Construct for yourself a
primary universal function for functions which are computable relative to your opponent’s
play (more precisely, relative to the function n — the nth move by your opponent.”

Following this strategy, N ensures the satisfaction of condition (WN2), since the
function constructed by M will of course be computable realtive to M’s actions. Thus
the forward implication is valid in (b). If M uses a similar strategy then N, not wishing
to violate condition (WN2), is obliged to construct a primary universal function for X-
computable functions, where X is the play of N, viewed as an oracle (the X' -computability
of this function is evident, and condition (WN2) ensures that the numbering is primary,
since M constructs a primary X-computable function). Hence the forward implication
holds in (a).

The reverse implications are proved as follows.

(b) If @ fails for a primary universal A-computable function, then M can beat any
computable strategy for N, by constructing a primary universal A-computable function,;
since the strategy for N is computable, the function M constructs will be A-computable
and primary for A-computable functions by condition (WN2) (more precisely, M must
act so that his or her actions are also A-computable, which is evidently possible).

(a) Similarly, if for some A property ® is satisfied then N beats any computable
strategy for M by constructing a primary universal A-computable function.

Theorem 2 is proved.

In the corollary presented below the words “.. for all sufficiently large A” signify
“there is a subset B of N such that ... for all A C N for which B <1 A.”

COROLLARY. The following equivalences hold:

1. Property ® holds for A-computation structures for all sufficiently large A 1f and
only if M has a winning strategy in the ®-game.

2. Property ® is false for A-computation structures for all sufficiently large A if and
only if N has a winning strategy i the ®-game.
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We remark that from the above together with the theorem on determinacy of Borel
games we may deduce the following result (Martin): if ® is a Borel property then either
® or its negation holds for all A-computation structures, for A sufficiently large.

Theorem 2 gives a scheme for the proof of the relativizable truth of a given property:
it is necessary to construct a computable winning strategy for M in the ®-game. An
analysis of the usual proofs in the theory of algorithms shows that the majority of them
are easily cast into this scheme, and the main portion of the proof is the description of
a strategy and the verification that it wins; its computability is easily verified.
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