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LOWER LIMITS OF FREQUENCIES IN COMPUTABLE SEQUEN
CES
RELATIVIZED A PRIORI PROBABILITY* ° AND

AN. A. MUCHNIK

(Translated by Brie Ellis)

For each computable sequence of natural numbers one can define a measure on N=
{1,2,+ -} by taking the measure of a natural number to be the lower limit of its frequency in
the beginning segments of a selected sequence. This paper establishes that among the measures
so determined there is a maximal one (to within a multiplicative constant) and that it coincides
with the a priori probability in the sense of [1] relative to a universal denumerable set (
(concerning relativization see [2, § 9.2]).

Suppose we have a computable sequence of natural numbers £(0), £(1), - - - and an arbitrary

natural number x. Consider the sequence whose nth term is the frequency of occurrence of x
among the first n terms of the sequence f i.e., the number of k< n such that f(k)=x, divided
by n. For each x we consider the lower limit of this sequence, which we call the lower frequency
of x in the sequence of f and write it as Freq, (x).

It 1s easily verified that the sum of all the Freq, (x) over all xe N does not exceed 1. We

assign to each computable sequence f(0), f(1), - - of natural numbers the measure defined
on subsets of the natural numbers by considering the measure of a singleton set {x} to be

Freq, (x). The theorem below shows that among all such measures there is a maximal one (to
within a multiplicative constant) and it establishes its connection with the a priori probability.

We recall that the a priori probability is the greatest non-negative function p:N- R, to
within a multiplicative constant, for which the set {(r, x)|re Q, xeN, r<p(x)} is denumerable
(Q is the set of rational numbers). The existence of such a function is proved in [1]. This proof
remains valid if “dunumerable’ is replaced in the definition of a priori probability by “dunumer-
able relative to 0".” (Sets are said to be denumerable relative to 0' [2, §§ 9.2-3] if they are the

range of a function computable by an algorithm with an oracle for some denumerable set. An
“algorithm with an oracle for a set X’ is an algorithm which can be subjected to a procedure
anwering the question “Is a in X 7 for any a.) Replacing “denumerability” by “denumerability
relative to 0" in the definition of a priori probability, we arrive at the notion of relativized a
prior1 probability relative to 0’, and it i1s the one we shall use.

THEOREM. (A) There is a computable sequence f such that for any computable sequence g,
some C' >0 and all xe N,

Freq, (x) = C Freq, (x)
(B) For this sequence f there are constants C,, C,> 0, such that
C,p(x) = Freqy (x) = C, p(x),

where p is the relativized a priori probability relative to 0.

Proof. 1t suffices to establish two facts: ‘

(1) for every computable sequence f the function x+~> Freq, (x) is denumerable relative to
0’ (this means that the set {(r, x)|re Q, x e N, r <f(x)} is denumerable relative to 0'): |

(2) for every function p= 0 that is denumerable from below relative to 0’ and for which
Y p(x)=1, there exists a computable sequence f such that p(x)= Freqy, (x) for any xeN.

The first fact is easily established. It suffices to observe that the property r<Freqf'(x)' 18
equivalent to: “there exists an N such that for all k> N the fraction of x in the beginning
segment f(0), - - -, f(k—1) exceeds r,”’ and this assertion has the form BN_ VkR(r,! x, N, k), where
R is a decidable predicate and so yields a set that is denumerable relative to 0.

To prove the second fact we need a lemma. By a simple semidistribution on N we siall
mean a function r: N— Q with non-negative values, finitely nonzero, and such 1:'hat > rix)=L

LEMMA. Let r, be a computable sequence of semidistributions. Then there exists a computable

sequence of natural numbers (0), f(1), - - -, such that

Freq, (x)Zliminf r (x).
k
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Proof. For each k we construct a finite sequence «, of natural numbers such that the

frequency of occurrence of x (denote it by ri(x)) is greater than or equal to r.(x) for every
x € N. The sequence f will have the form

aoiiqaoalil-alazu-iazlni

where a, is repeated n, times, k=0,1,- -+ ; n, is chosen to be so large that the addition to

a, - - a, of any sequence of natural numbers of length at most |ay.,| + nolap| ++ * + + ey ap |

(|a| is the length of the sequence a) changes the frequency by little (by at most 1/k).
Consider an arbitrary beginning segment of the sequence constructed. It has the form

TR 7 PR S PR Py -2
where B is some start of the sequence «;,. We form two groups out of the natural numbers
appearing in this segment: one containing the numbers in @y - - @y * * @y " * * @x—B, and the

other the numbers in a, - - * a,. In the first group the frequencies are close to r)_, (to within
1/{(k—1)) and in the second group they are equal to r,. Therefore the frequencies over the
whole beginning segment occupy (to within 1/(k—1)) a sort of average position between r}_,
and r,. Hence the assertion in the lemma 1s true.

Let us turn to the proof of the theorem. Let p be a non-negative function from N into R'
that is denumerable from below relative to 0'. Such a function can be represented as the limit
of an increasing 0’-computable sequence of simple semidistributions u, (e.g., we can define
u, (x) to be 0 if x=k and u,(x) to be the largest rational number r for which the pair (7, x}
occurs in k steps of the 0'-enumeration of the set {(r, x)|r < p(x)} if x < k). Every 0’-computable
function is the limit of a stabilized computable sequence: u, =lim, u,,, where u, is a simple
semidistribution depending computably on k and s, and among all the u,, for a given k there
are only a finite number of distinct ones (see [3, chapter 6]). We now construct a sequence of
simple semidistributions to which the lemma is applied. For each s, consider simple semidistribu-
tions uy,, Uy, * * * , U and choose from among them an increasing beginning segment of maximal
length (for which u,(x)="'-=u,(x) for any x). Take r, to be the last term u,,.

To complete the proof it remains to show that if r < p(x), then r <r,(x) for all s except a
finite number. Indeed, if r<p(x), then r<u,(x) for some k We look at u; , ", Uy, @S §
increases. For s sufficiently large, they will be equal to u,, - - -, u,. For such s (one can even

assume s> k) the maximal increasing segment will contain u,,, * -+, U, (since the sequence u;
increases) and consequently r(x) = u,,(x)>r.
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ON THE OPERATING TIME OF ERRORLESS PROBABILISTIC TURING MACHINES*
R. V. FREIVALD
(Translated by Yona Ellis)

Probabilistic Turing machines differ from deterministic Turing machines (see the definition
in [1]) only in that at each stage of operation probabilistic machines can use the output of a
random number generator which puts out the values {0, 1} equiprobably and independently of
the output at other times.

The following definition of language recognition on a probabilistic machine in time z(x)
with a probability p is used. It is required that for any input word x, the following event occurs
with a probability at least p (where p is a fixed number >3): the machine stops in at most time
t(x) and gives the right result. In particular, if x belongs to this language then the result “belongs”’

is put out with a probability =Zp>3 (and also in at most t(x) steps), while the result “‘does not
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