LOWER LIMITS OF FREQUENCIES IN COMPUTABLE SEQUENCES AND RELATIVIZED A PRIORI PROBABILITY*

AN. A. MUCHNIK

(Translated by Brie Ellis)

For each computable sequence of natural numbers one can define a measure on $N = \{1, 2, \cdots\}$ by taking the measure of a natural number to be the lower limit of its frequency in the beginning segments of a selected sequence. This paper establishes that among the measures so determined there is a maximal one (to within a multiplicative constant) and that it coincides with the a priori probability in the sense of [1] relative to a universal denumerable set 0' (concerning relativization see [2, § 9.2]).

Suppose we have a computable sequence of natural numbers $f(0), f(1), \cdots$ and an arbitrary natural number x. Consider the sequence whose nth term is the frequency of occurrence of x among the first n terms of the sequence f, i.e., the number of k < n such that f(k) = x, divided by n. For each x we consider the lower limit of this sequence, which we call the lower frequency of x in the sequence of f and write it as $\operatorname{Freq}_f(x)$.

It is easily verified that the sum of all the $\operatorname{Freq}_f(x)$ over all $x \in \mathbb{N}$ does not exceed 1. We assign to each computable sequence $f(0), f(1), \cdots$ of natural numbers the measure defined on subsets of the natural numbers by considering the measure of a singleton set $\{x\}$ to be $\operatorname{Freq}_f(x)$. The theorem below shows that among all such measures there is a maximal one (to within a multiplicative constant) and it establishes its connection with the a priori probability.

We recall that the a priori probability is the greatest non-negative function $p: N \to \mathbb{R}^1$, to within a multiplicative constant, for which the set $\{\langle r, x \rangle | r \in \mathbb{Q}, x \in \mathbb{N}, r < p(x)\}$ is denumerable (Q is the set of rational numbers). The existence of such a function is proved in [1]. This proof remains valid if "dunumerable" is replaced in the definition of a priori probability by "dunumerable relative to 0'." (Sets are said to be denumerable relative to 0' [2, §§ 9.2-3] if they are the range of a function computable by an algorithm with an oracle for some denumerable set. An "algorithm with an oracle for a set X" is an algorithm which can be subjected to a procedure anwering the question "Is a in X?" for any a.) Replacing "denumerability" by "denumerability relative to 0" in the definition of a priori probability, we arrive at the notion of relativized a priori probability relative to 0', and it is the one we shall use.

THEOREM. (A) There is a computable sequence f such that for any computable sequence g, some C > 0 and all $x \in \mathbb{N}$,

$$\operatorname{Freq}_f(x) \geq C \operatorname{Freq}_g(x)$$

(B) For this sequence f there are constants C_1 , $C_2 > 0$, such that

$$C_1 p(x) \ge \operatorname{Freq}_f(x) \ge C_2 p(x),$$

where p is the relativized a priori probability relative to $\mathbf{0}'$.

Proof. It suffices to establish two facts:

(1) for every computable sequence f the function $x \mapsto \operatorname{Freq}_f(x)$ is denumerable relative to 0' (this means that the set $\{\langle r, x \rangle | r \in \mathbb{Q}, x \in \mathbb{N}, r < f(x)\}$ is denumerable relative to 0');

(2) for every function $p \ge 0$ that is denumerable from below relative to 0' and for which $\sum_{x} p(x) \le 1$, there exists a computable sequence f such that $p(x) \le \operatorname{Freq}_{f}(x)$ for any $x \in \mathbb{N}$.

The first fact is easily established. It suffices to observe that the property $r < \text{Freq}_f(x)$ is equivalent to: "there exists an N such that for all k > N the fraction of x in the beginning segment $f(0), \dots, f(k-1)$ exceeds r," and this assertion has the form $\exists N \forall kR(r, x, N, k)$, where R is a decidable predicate and so yields a set that is denumerable relative to 0'.

To prove the second fact we need a lemma. By a simple semidistribution on N we shall mean a function $r: N \to Q$ with non-negative values, finitely nonzero, and such that $\sum_{x} r(x) \le 1$.

LEMMA. Let r_k be a computable sequence of semidistributions. Then there exists a computable sequence of natural numbers $f(0), f(1), \cdots$, such that

Freq_f
$$(x) \ge \lim_{k} \inf r_k(x)$$
.

^{*} Received by the editors April 27, 1987.

Proof. For each k we construct a finite sequence α_k of natural numbers such that the frequency of occurrence of x (denote it by $r'_k(x)$) is greater than or equal to $r_k(x)$ for every $x \in \mathbb{N}$. The sequence f will have the form

$$\alpha_0 \cdots \alpha_0 \alpha_1 \cdots \alpha_1 \alpha_2 \cdots \alpha_2 \cdots$$

where α_k is repeated n_k times, $k=0,1,\cdots$; n_k is chosen to be so large that the addition to $\alpha_k \cdots \alpha_k$ of any sequence of natural numbers of length at most $|\alpha_{k+1}| + n_0 |\alpha_0| + \cdots + n_{k-1} |\alpha_{k-1}|$ ($|\alpha|$ is the length of the sequence α) changes the frequency by little (by at most 1/k).

Consider an arbitrary beginning segment of the sequence constructed. It has the form

$$\alpha_0 \cdots \alpha_0 \alpha_1 \cdots \alpha_1 \cdots \alpha_{k-1} \cdots \alpha_{k-1} \beta$$
,

where β is some start of the sequence α_k . We form two groups out of the natural numbers appearing in this segment: one containing the numbers in $\alpha_0 \cdots \alpha_0 \cdots \alpha_{k-1} \cdots \alpha_{k-1} \beta$, and the other the numbers in $\alpha_k \cdots \alpha_k$. In the first group the frequencies are close to r'_{k-1} (to within 1/(k-1)) and in the second group they are equal to r'_k . Therefore the frequencies over the whole beginning segment occupy (to within 1/(k-1)) a sort of average position between r'_{k-1} and r_k . Hence the assertion in the lemma is true.

Let us turn to the proof of the theorem. Let p be a non-negative function from \mathbb{N} into \mathbb{R}^1 that is denumerable from below relative to \mathbb{O}' . Such a function can be represented as the limit of an increasing \mathbb{O}' -computable sequence of simple semidistributions u_k (e.g., we can define $u_k(x)$ to be 0 if $x \ge k$ and $u_k(x)$ to be the largest rational number r for which the pair $\langle r, x \rangle$ occurs in k steps of the \mathbb{O}' -enumeration of the set $\{\langle r, x \rangle | r < p(x) \}$ if x < k). Every \mathbb{O}' -computable function is the limit of a stabilized computable sequence: $u_k = \lim_s u_{ks}$, where u_{ks} is a simple semidistribution depending computably on k and s, and among all the u_{ks} for a given k there are only a finite number of distinct ones (see [3, chapter 6]). We now construct a sequence of simple semidistributions to which the lemma is applied. For each s, consider simple semidistributions $u_{1s}, u_{2s}, \cdots, u_{ss}$ and choose from among them an increasing beginning segment of maximal length (for which $u_{1s}(x) \le \cdots \le u_{ls}(x)$ for any x). Take r_s to be the last term u_{ls} .

To complete the proof it remains to show that if r < p(x), then $r < r_s(x)$ for all s except a finite number. Indeed, if r < p(x), then $r < u_k(x)$ for some k. We look at u_{1s}, \dots, u_{ks} as s increases. For s sufficiently large, they will be equal to u_1, \dots, u_s . For such s (one can even assume s > k) the maximal increasing segment will contain u_{1s}, \dots, u_{ks} (since the sequence u_i increases) and consequently $r_s(x) \ge u_{uks}(x) > r$.

REFERENCES

- [1] V. V. V'YUGIN, Algorithmic entropy (complexity) of finite objects and its application to the definition of randomness and amount of information, in Semiotika and Informatika, VINITI, Moscow, 1981, pp. 14-43. (In Russian.)
- [2] H. ROGERS, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
- [3] J. R. SHOENFIELD, Degrees of Unsolvability, American Elsevier Publishing Company, New York, 1971.

ON THE OPERATING TIME OF ERRORLESS PROBABILISTIC TURING MACHINES*

R. V. FREIVALD

(Translated by Yona Ellis)

Probabilistic Turing machines differ from deterministic Turing machines (see the definition in [1]) only in that at each stage of operation probabilistic machines can use the output of a random number generator which puts out the values $\{0, 1\}$ equiprobably and independently of the output at other times.

The following definition of language recognition on a probabilistic machine in time t(x) with a probability p is used. It is required that for any input word x, the following event occurs with a probability at least p (where p is a fixed number $>\frac{1}{2}$): the machine stops in at most time t(x) and gives the right result. In particular, if x belongs to this language then the result "belongs" is put out with a probability $\geq p > \frac{1}{2}$ (and also in at most t(x) steps), while the result "does not

^{*} Received by the editors April 17, 1987.