
Theoretical Computer Science 271 (2002) 15–35
www.elsevier.com/locate/tcs

Kolmogorov entropy in the context of computability theory

Andrej A. Muchnik∗, Semen Ye. Positselsky
Institute of New Technologies of Education (INT), Nizhnyaya Radishchevskaya Street 10,

109004 Moscow, Russia

Abstract

We consider the overgraph of the Kolmogorov entropy function and study whether it is a
complete enumerable set with respect to di.erent types of reductions. It turns out that (for
any type of entropy) the overgraph of the conditional entropy function is m-complete, but the
overgraph of the unconditional entropy function is not m-complete (and also not bT -complete).
For tt-completeness, the situation is more subtle: the overgraph of the unconditional pre3x entropy
may be tt-complete or incomplete depending on the optimal programming system used in the
de3nition of entropy. To prove these results we use the notion of r-separability and its e.ective
version introduced in this article for the 3rst time. c© 2002 Elsevier Science B.V. All rights
reserved.

Keywords: Kolmogorov entropy; m-completeness; tt-completeness; r-separability

Preface

In the 1960s, the notion of entropy of a 3nite object was introduced in the works
of A. Kolmogorov and R. Solomono.. An important contribution of this notion is
constituted by formal mathematical explication of the concept of randomness (with
respect to a probability distribution). In this paper, we do not consider distributions,
nor other structures on 3nite objects (like the pairing function). We are interested
in a purely algorithmic characterization of the entropy function. Let us mention that
alternative de3nitions of entropy were given after the 3rst one. They are systematized
in [13]. If the opposite is not mentioned, our considerations will be applicable to any
of these notions of entropy. To make our considerations complete and self-contained,
we describe both new and known results.
An entropy function maps a constructive universe 1 (for example – the set of all

3nite binary strings) into the set of all positive integers. This function, denoted by K(·),
is enumerable from above (or upper computable). This means that the overgraph

∗ Corresponding author. Fax: +7-095-915-6963.
1 The reader can learn about constructive objects and constructive universes (aggregates) in [12].

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00028 -7

16 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

M = {(x; n) |K(x)¡n} is enumerable. In our study of the set M we discovered several
algorithmic properties and notions, which are interesting independent of the entropy
context.
In Part I, we study these notions. We shall utilize several types of algorithmic re-

ducibility. Among many reducibilities introduced in the theory of algorithms, we have
chosen seven. The 3rst is m-reducibility. Its role for computability is similar to that
of homomorphism in algebra. We write A6mB if A is an inverse image of B under
a total computable function. The other six reducibilities are transitive and closed un-
der Boolean operations. (This means that A6B and B6C imply A6C, A6C and
B6C imply A∪B6C, A6B implies DA6B.) Namely, we consider the Turing (or
T -) reducibility, the weak truth-table (or w-) reducibility, the truth-table (or tt-) re-
ducibility, and their bounded versions (bT , bw, btt). As usual, the Turing reducibility
uses the oracle without restrictions. For w-reducibility, the oracle is used once and is
asked several (3nite number of) questions. For the truth-table reducibility, the reducing
algorithm gives a result for any answers of the oracle, even those not corresponding
to the set to which we reduce. The bounded reducibilities assume that the number of
questions to the oracle is limited by a constant independent of inputs and of oracle’s
answers.

Statement. By a compactness argument, any tt-reducing algorithm can be e5ectively
transformed to an algorithm satisfying both the tt- and w-restrictions. Similarly, a
btt-reducing algorithm can be e5ectively transformed to an algorithm satisfying both
the btt- and bw-restrictions. In this transformation, if the original algorithm asks no
more than c questions to the oracle, the new algorithm will ask no more than 2c

questions.

Proof of this statement is straightforward.
Further on, discussing the tt- (btt-) reducing algorithms we will assume that they

are also restricted by w (bw).
Clearly, the transitivity and Boolean-closure properties for all reducibilities are valid

e.ectively. In the following diagram, the arrows are directed from stronger reducibilities
to weaker ones:

T ←− w ←− tt
�



�



�



bT ←− bw ←− btt ↖
m

Let us now outline the further content of the paper.
In Part I, we would like to mention a strengthening of Post’s theorem on

non-btt-completeness of simple sets. It is proved that simple sets are even non-bT -
complete. This follows from the fact that the complete bT -degree contains exactly one
btt-degree (not only among the enumerable sets).

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 17

Part II needs familiarity with the de3nitions of unconditional and conditional en-
tropies (the simple and pre3x ones). We study the conditional entropy K(·|·) 3rst. It is
enumerable from above and we prove that the enumerable set M={(x; y; n) |K(x|y)¡n}
is m-complete. By a theorem of J. Myhill, all m-complete enumerable sets are recur-
sively isomorphic. Hence, we get a 3nal algorithmic characterization of conditional
entropy. The situation with unconditional entropy is more complicated. Its overgraph
is not bT -complete, but it is w-complete. It remains to resolve the problem of its
tt-completeness. M. Kummer proved that the overgraph of simple entropy is tt-complete.
Let us recall here that any entropy consists of a countable family of functions. The
di.erence between any two members of the family is bounded. In the previous consid-
eration all results were equally true for all members of any entropy family. Unexpect-
edly, it is not so now: there are functions of pre7x entropy for which the overgraph
is tt-complete and such functions for which the overgraph is not tt-complete.
In Part II, we also prove an interesting inequality: 2

∀d ∃x; y (KS(x) + d ¡ KS(y) ∧ KP(y) + d ¡ KP(x)):

So, “up to an additive logarithm” the simple and pre3x entropies are the same, but
on closer look they are very di.erent.
Main results of this paper were reported at Kolmogorov Seminar of Moscow State

University in the fall of 1998. 3

Part 1

In 1956 Albert Muchnik introduced the following notion [8].

De�nition 1.1. An enumerable set A is called r-separable if for any enumerable set B
such that A∩B= ∅ there exists a decidable set C that separates A from B (that is A ⊂ C
and B∩C = ∅).

Obviously, all decidable sets and all simple sets are r-separable. M. Kummer and
F. Stephan proved that the enumerable frequency decidable 4 sets are r-separable [5].
For any function f consider the set { (x; n) |f(x)¡n}; we will call it the overgraph
of f. The overgraph of an entropy function is also r-separable. It is interesting to note
that the very rich class of frequency decidable sets does not contain the overgraph of
an entropy function (M. Kummer’s theorem [4]). On the other hand, no m-complete
enumerable set is r-separable (this follows from two facts: all m-complete enumerable

2 Here KS denotes the simple entropy and KP denotes the pre3x entropy. It is well known that KS(z)−
O(1)¡KP(z)¡KS(z) + O(log(KS(z))).

3 The results of the 3rst part were announced in [10].
4 A set G is called frequency decidable with parameter m if there is a computable function � such that

for each set H of m elements �(H) is a function from H to {0; 1} which di.ers from the restriction of the
characteristic function of G.

18 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

sets are recursively isomorphic to the universal set and there exists a nonseparable pair
of enumerable sets).
In the general theory of algorithms, many notions 3nd their e.ective analogs (often

in various ways).

De�nition 1.2 (S. Positselsky). An r-separable set A is called e.ectively r-separable
if there exists the following algorithm �. For any enumerable set B not intersecting A,
the algorithm � terminates on the text of any program � enumerating B. In addition,
�(�) is the text of the program for recognition of some set C that separates A from B.
(The program for recognition of a set outputs 1 on the elements of this set and 0 on
the other elements.)

It is clear that all decidable sets are e.ectively r-separable.

Theorem 1.1 (S. Positselsky). All e5ectively r-separable sets are decidable.

Proof. Here and in the sequel we will construct enumerable sets using in the con-
struction the text of a program enumerating the set that we are constructing. To avoid
a vicious circle, we must construct the set corresponding to a program enumerat-
ing another set. Then we make the two sets coincide, using the 3xed point theorem
of S. Kleene. The same method is used to construct computable functions (partially
de3ned).
Let A be an e.ectively r-separable set. Suppose an algorithm � ensures this e.ect-

iveness. For each n let us construct the set Bn, which is enumerated by the program
�n. If � is de3ned on �n, let us run the program �(�n) on the input n. If the output
of �(�n) on the input n is equal to 1, then Bn = {n}. If either � is not de3ned on �n,
or the output of the program �(�n) on the input n is not de3ned or is not equal to 1,
then Bn = ∅.
We claim that n =∈A⇔ [�(�n)](n)= 0; therefore, the complement of the set A is

enumerable.
Let us prove “⇒”. If n =∈A, then Bn in any case does not intersect A. Therefore,

the algorithm � is de3ned on �n and the program �(�n) is de3ned on any input. If
[�(�n)](n)= 1, then Bn = {n}. But the set recognized by �(�n) separates A from Bn.
We see that [�(�n)](n)= 0.
Let us prove “⇐”. If [�(�n)](n)= 0, then Bn = ∅. It follows from the de3nition of �

that A ⊂ {x | [�(�n)](x)= 1}. We see that n =∈A.

More fruitful is the following weak e.ectivization of r-separability.

De�nition 1.3 (S. Positselsky). An r-separable set A is called resilient if there exists
the following algorithm �. If B is an enumerable set not intersecting A, this algorithm
� is de3ned on the text of any program � enumerating B. The output �(�) is the text
of a program enumerating a decidable set C which separates A from B.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 19

The only di.erence between resilience and e.ective r-separability is that for the
former, though the separating set C remains decidable, one 3nds only an enumeration
(and not recognition) of C starting from an enumeration of B.
It is clear that all decidable sets and all strongly e.ectively simple 5 sets are resilient.

In the second part of this paper, we will show that the overgraph of an entropy function
is resilient.
The classes of r-separable and resilient sets have a good property of being lattices

(just as the classes of decidable, enumerable, frequency decidable sets).

Theorem 1.2 (S. Positselsky). The class of r-separable sets is closed under the oper-
ations of union and intersection.
The class of resilient sets is e5ectively closed under the operations of union and

intersection.

In the second statement, the e.ectiveness means that starting from algorithms enu-
merating two sets A1 and A2 and algorithms ensuring their resilience, one e.ectively
constructs algorithms ensuring the enumerability and resilience of A1 ∪A2 and A1 ∩A2.

Proof. The proofs of these two statements are very similar. Let A1 and A2 be
r-separable (or, respectively, resilient) sets.
Let us prove that the set A1 ∪A2 is r-separable (resilient). Let B be an enumerable

set not intersecting A1 ∪A2. Then B is separated from A1 and B is separated from
A2. We can 3nd enumeration programs for two decidable sets C1 and C2 such that
A1⊂C1, A2⊂C2, B∩C1 = ∅, B∩C2 = ∅. Then the sets A1 ∪A2 and B are separated by
the decidable set C1 ∪C2 (whose enumeration program is known).
Let us prove that the set A1 ∩A2 is r-separable (resilient). Let B be an enumerable set

which does not intersect A1 ∩A2. Since A1 ∩ (A2 ∩B)= ∅, the set A1 is separated from
the enumerable set A2 ∩B. We can 3nd an enumeration program for a decidable set C
such that A1 ⊂ C and (A2 ∩B)∩C = ∅. Since A2 ∩ (B∩C)= ∅, the set A2 is separated
from the enumerable set B∩C (whose enumeration program we know). Therefore,
we can 3nd an enumeration program for a decidable set D such that A2 ⊂ D and
(B∩C)∩D= ∅. Now, we see that A1 ∩A2⊂C ∩D and B∩ (C ∩D)= ∅. Thus, the
decidable set C ∩D separates A1 ∩A2 from B (and we know an enumeration program
of C ∩D).

It is obvious that the class of r-separable (resilient) sets is (e.ectively) closed under
cylindri3cation. It follows that this class is also (e.ectively) closed under many other
operations. For example, the Cartesian product of two sets is an intersection of two
cylinders.

5 An enumerable set A is called strongly e.ectively simple if given a program enumerating a set B not
intersecting A one can e.ectively construct a number larger than max(B). The simple set of Post [11] is
strongly e.ectively simple.

20 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

We turn now to the questions of completeness with respect to the various reducibil-
ities. We need the following result, which is due to Lachlan [6]. If the set A∩B is
m-complete and the set A is enumerable, then either A or B is m-complete. Here we
formulate and give a new proof of an e.ectivization of this statement.

Theorem 1.3 (A. Lachlan). Let U be an enumerable m-complete set. Then there ex-
ists an algorithm that given a program enumerating a set A constructs a program
computing a function f such that f(U)⊂U; f(DU)⊂A\U; and if the set U ∪A is
not m-complete; then f is a total function.

Proof. Using the 3xed point theorem, let us construct an auxiliary function xyz:gx;y(z).
Having a program computing this function and two elements x and y, we 3nd the pro-
gram computing h= z:gx;y(z). It is known that given a program h one can e.ectively
3nd an input v such that if h(v) terminates, then v∈U⇔ h(v)∈U . 6 Running the enu-
merations of the sets U and A, we wait until y is caught in U or v is caught in U ∪A.
If neither of the two events ever happens, then gx;y(z) is unde3ned for all z. If it is
3rst revealed that y∈U , then ∀z gx;y(z)=y. If it is 3rst revealed that v∈U ∪A, then
∀z gx;y(z)= x.
Let us construct the function x:f(x). Given an input x, we look over all the values

of y and 3nd a value such that for the corresponding v it is true that gx;y(v)= x. Then
we put f(x)= v.
Let us prove that the function f is well de3ned. We will show that if for some x0

the value of f(x0) is not de3ned, then the set U ∪A is m-complete.
Construct the function yp(y) which m-reduces the set U to the set U ∪A. Let

p(y) be equal to v that corresponds to the pair x0; y. If y∈U , then ∀x; z gx;y(z) is
de3ned. It follows that gx0 ;y(v)=y. This implies that v∈U⇔y∈U . That is, p(y)∈U .
If y =∈U , then v =∈U ∪A; otherwise, we have gx0 ;y(v)= x0 and f(x0) is de3ned. Thus,
y∈U⇔p(y)∈U ∪A.
Suppose that the function f is de3ned on an input x. This means that ∃y gx;y(f(x))

= x. It follows that f(x)∈U ∪A and f(x)∈U⇔ x∈U . This proves the desired prop-
erty of f.

Let us illustrate this proof by the next three pictures (see Figs. 1–3).
The next theorem is a stronger version of Kobzev’s result [3] about non-btt-

completeness of r-separable sets. However, in our case the non-bT -completeness can-
not be proved in the same way. Kobzev’s reasoning is based on the following fact: if
an enumerable set A can be btt-reduced to an r-separable set, then A is r-separable.
Indeed, we will show that there exists an enumerable non-r-separable set A which can
be bw-reduced to an r-separable set.

Theorem 1.4 (S. Positselsky). No r-separable set is bT -complete.

6 For the universal set U this fact immediately follows from the 3xed-point theorem.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 21

Fig. 1. Function gx;y .

Fig. 2. Function f(x).

Fig. 3. Function p(y).

Proof. Let B be an r-separable set and U be an enumerable m-complete set. The proof
is by reductio ad absurdum. Suppose U6bTB and � is an algorithm which bT -reduces
U to B and has the minimal possible bound on the number of questions to the oracle.
If this bound is equal to zero, then the set U is decidable. If the bound is equal to
n + 1, let us construct a new algorithm. The new algorithm will reduce U to B and
for any input it will ask the oracle no more than n questions.
For each program % enumerating the set D% consider the set A% of all the inputs

y on which the algorithm � either does not ask the oracle any questions, or the 3rst
question asked belongs to D%. It is clear that A% is enumerable uniformly in %. Let f%
be the function given by the construction of Theorem 1.3 applied to the sets U and
A%. Denote by q(y) the 3rst question that the algorithm � poses to the oracle on the
input y.
Suppose the new algorithm has received an input x. Consider the set C of all ele-

ments of the form q(f%(x)), where x is 3xed and % is changing (notice that q and f%
are partial functions). It is clear that C is enumerable uniformly in x.
Suppose that B∩C = ∅; then for some ” the set D(is decidable, B is contained in

D(, and C does not intersect D((due to r-separability of B). The set U ∪A(can be
reduced to the set B in a way that requires not more than n questions to the oracle
on each input. Indeed, if the algorithm � asks the oracle no questions on the input y,

22 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

then y∈A(. If q(y)∈D(, then y∈A(. If q(y) =∈D(, then y =∈A(. Now, we can use the
algorithm � to 3nd out whether y belongs to U without asking oracle the 3rst question
(the answer is already known: q(y) =∈D(⇒ q(y) =∈B). One can 3nd out whether q(y)
belongs to D(, because this set is decidable.
If for some x the set U ∪A(is m-complete, the new algorithm m-reduces the

set U to the set U ∪A(and then bT -reduces the set U ∪A(to the set B, as de-
scribed.
If for each x the set U ∪A(is not m-complete, then by Theorem 1.3 the value

f((x) is de3ned, f((x)∈U ∪A(, and x∈U⇔f((x)∈U . If q(f((x)) is de3ned, then
q(f((x))∈C, hence q(f((x)) =∈D(and f((x) =∈A(, hence f((x)∈U and x∈U .
We see that there at least one of the next three conditions holds: (B∩C �= ∅), or

(f((x) is de3ned, but q(f((x)) is not de3ned), or (x∈U). Let us return to the con-
struction of the new algorithm. Given an input x, it waits until any of the following
three events happens: a program % is found such that q(f%(x))∈B; a program ” is
found such that f((x) is de3ned, but q(f((x)) is not; or x is caught in the enumeration
of U . In the 3rst case, the new algorithm emulates the work of the algorithm � on the
input f%(x) without asking the oracle the 3rst question (since the answer is known). In
the second case, the new algorithm emulates the work of the algorithm � on the input
f((x) without asking the oracle any questions. In the third case, we actually know that
x∈U . Recall that if f(x) is de3ned, then x∈U⇔f(x)∈U .

Theorem 1.5 (S. Positselsky). There exists a nonseparable pair of enumerable sets
such that each of them is bw-reducible to a resilient set.

Proof. Let A be a nondecidable resilient set. By the decomposition theorem [2, 9] there
exist enumerable sets B1; B2, for which the following holds. First, A=B1 ∪B2; second,
B1 ∩B2 = ∅; third, B1 and B2 are not separable by a decidable set. An algorithm bw-
reducing Bi to A works as follows. Given an input x, if the oracle answers “x =∈A”,
the output of the algorithm is “x =∈Bi”. If the oracle answers “x∈A”, we enumerate
the sets B1 and B2 until x is caught in one of them. In the latter case, we use the
assumption that the oracle’s answer is correct (hence it is not a tt-reducing algorithm).

Lachlan proved [7] that for an enumerable set B the properties of bw-completeness
and btt-completeness are equivalent. Here we will prove a stronger result, replac-
ing bw-completeness by bT -completeness and eliminating the enumerability require-
ment. Theorem 1.4 can be deduced from Theorem 1:6 and the preservation property of
r-separability with respect to btt-reducibility, which was mentioned earlier. Neverthe-
less, we give an independent proof, which will be useful in the second part of this
paper (see the remark after Theorem 2.3).

Theorem 1.6 (An. Muchnik). If an enumerable m-complete set U is bT -reducible to
a set B; then U is also btt-reducible to B.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 23

Lemma. Let U be an enumerable m-complete set; A0⊃A1⊃ · · · ⊃Ak be enumerable
sets; and A0 =Ak = ∅. Then there exists a total computable function r and a number
i such that r(U)⊂U and r(DU)⊂Ai\(Ai+1 ∪U).

Proof of Lemma. For the identity function q0 we have q0(U)⊂U and q0(DU)⊂A0\U .
Let us argue by induction on i. Given a total computable function qi for which
qi(U)⊂U and qi(DU)⊂Ai\U , we will construct either an analogous function qi+1,
or a function r required in the Lemma. Because no function qk exists for which
qk(DU)⊂Ak\U , at a certain step i a function r will be constructed. Let s be a com-
putable injective function whose image is the enumerable set U ∪Ai. The preimage
of U under s is an enumerable m-complete set, since the composition of functions
s−1qi = x:s−1(qi(x)) m-reduces U to the set s−1(U). According to the proof of
Theorem 1.3, for the enumerable set s−1(Ai+1) there exists either a total computable
function f for which f(s−1(U))⊂ s−1(U) and f(s−1(U))⊂ s−1(Ai+1)\s−1(U), or a
total computable function p for which p(s−1(U))⊂s−1(U) and p(s−1(U))⊂
s−1(Ai+1)∪s−1(U). In the 3rst case, we can put qi+1 = sfs−1qi; then qi+1(U)⊂U
and qi+1(DU)⊂Ai+1\U . In the second case, we set r= sps−1qi.

Proof of Theorem. Assume that U is reduced to B by a bT -algorithm � posing no
more than n questions to the oracle. We will construct a btt-algorithm %, reducing U
to B and asking the oracle less than 2n questions. In addition, the construction of %
will not depend on B.
Let us assign to each input y of the algorithm � a set D(y) of binary charts

〈d1; d2; : : : ; dj; u〉. A chart belongs to the set D(y) if the algorithm � gives the output u
on the input y, provided that it receives d1; : : : ; dj as the oracle’s answers to the algo-
rithm’s questions (no matter whether the oracle’s answers correspond to the set B). It is
clear that |D(y)|62n for each y. For each 06i62n+1 we set Ai = {y | |D(y)|¿i}. It
is obvious that sets Ai satisfy the conditions of the Lemma. Let r be a total computable
function for which r(U)⊂U and r(DU)⊂Ai\(Ai+1 ∪U).
Given an input z, the algorithm % enumerates the sets U and D(r(z)) simultaneously.

We know that z ∈U or |D(r(z))|= i. If z is caught in U , then the output of % is known.
Suppose that i elements have been caught in the enumeration of D(r(z)) (denote the set
of those elements by E). The algorithm % asks the oracle at once all the questions which
would be posed by the algorithm � on the input r(z), assuming that the latter algorithm
receives the answers from E. If the oracle’s answers turn out to be compatible with
one of the charts from E, then the output of % is equal to the output of � mentioned
in this chart (there can be no more than one such chart). If the oracle’s answers turn
out incompatible with every chart from E, then the output of % is “z ∈U”. In the
3rst case, the algorithm % is correct, because the algorithm � is. In the second case,
if the oracle’s answers correspond to the set B and the algorithm � is correct, then
a chart which does not belong to E will eventually appear in D(r(z)). The latter is
incompatible with “z =∈U”.

The next result is symmetric to the previous one.

24 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

Theorem 1.7 (An. Muchnik). If a set B is bT -reducible to an enumerable m-complete
set U; then B is also btt-reducible to U .

Proof. Assume that B is reduced to U by a bT -algorithm � posing no more than n
questions to the oracle. We will construct a btt-algorithm %, reducing B to U and
asking the oracle less than 2n+2 questions. First, let us modify the algorithm � so that
it would satisfy the following requirement. If the oracle answered “yes” to the question
“x∈U?”, the enumeration of U is started; after x is caught in U , the usual work of �
resumes. That is, if the true answer to the question is “no”, then the modi3ed algorithm
will never stop. Obviously, the modi3ed algorithm � still bT -reduces B to U .
Now let us use the sets D(y) de3ned in the proof of the previous theorem. Since

the set {(y; z) | z ∈D(y)} is enumerable, it is m-reducible to U (say, by a function f).
Given an input y, the algorithm % asks the oracle about all the elements f(y; z), where
z is a binary chart of length no more than n + 1. If the oracle answers correctly, we
will know the set D(y).
Due to the requirement imposed on the algorithm �, the set of true oracle’s answers

to the questions of � and the output of � on the input y can be found as follows. Let
us de3ne by induction a sequence of sets D0⊃D1⊃D2 : : : . Put D0 =D(y). In all the
charts from the set Dj the 3rst j digits will correspond to the true oracle’s answers to
the 3rst j questions of � on the input y. If Dj contains a chart of length j+1, then this
chart is true. Otherwise, let us de3ne Dj+1. If Dj contains some charts in which the
(j+1)th digit means “yes”, then Dj+1 consists of all such charts. Otherwise Dj+1 =Dj.
This construction gives some output even when the oracle answers the questions of

% incorrectly.

The following answer to a question of G. Kobzev is a corollary of Theorems 1:6
and 1:7.

Corollary. The complete bT-degree contains exactly one btt-degree.

Theorem 1.8 (S. Positselsky). Any resilient set is either decidable; or T -complete.

This theorem will follow from Theorem 1.9, which was proven in [1].

De�nition 1.4 (M. Blum, I. Marques). An enumerable set A is called subcreative if
there exists an algorithm � with the following properties. If B is an enumerable set not
intersecting A, the algorithm � is de3ned on the text of any program � enumerating
B. The result �(�) is the text of a program enumerating a set C such that A(C and
B∩C = ∅.

Obviously, if a nondecidable set is resilient, then it is subcreative.

Theorem 1.9 (M. Blum, I. Marques). Any subcreative set is T -complete.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 25

Part 2

Theorem 2.1 (An. Muchnik). The overgraph of any conditional entropy function is
an m-complete set.

Proof. We will use an idea from the proof of M. Kummer’s theorem on the uncondi-
tional simple entropy.
Let U be an enumerable set. We would like to construct an algorithm m-reducing

U to the set M = {(x; y; n) |K(x |y)¡n}, where K(x |y) denotes the entropy of x
conditional to y. 7 We will need the following auxiliary construction. It depends on a
natural number d considered as a free parameter.
To any condition y we assign a scale. Any scale has a pointer and 2d points,

numbered by the integers between 1 and 2d. During the time when the construction is
performed, the number of the point under the pointer will never decrease. Some points
will be marked with a pair of natural numbers each, where the 3rst component of the
pair coincides with the number of the point. No point is marked more than once, and
no pair of numbers marks more than one point. Some pointers will be tied to their
positions at certain moments of time and do not move thereafter.
Let us 3x certain enumerations of the sets U and M . Denote by Ut and Mt the

subsets enumerated in the 3rst t steps. The construction consists of a sequence of
3nite stages. At the 3rst stage, all the pointers are on the lowest points of their scales
(numbered by 1) and no point is marked. Let us describe the stage number t.
For each v∈Ut all the pointers placed over the points marked by pairs of the

form (w; v) are tied to those points. Let us process one by one the 3rst t scales
whose pointers are not tied. Consider the scale assigned to the condition y. We move
its pointer to the minimal point x for which (x; y; d) =∈Mt . Such an x does exist,
because ∀y; n |{x | (x; y; n)∈M}|¡2n. If the new position of the pointer di.ers from
the previous one, let us take the minimal z for which the pair (x; z) has not been
used as a mark yet. We mark the xth point on the yth scale by the pair (x; z). This
completes the description of the auxiliary construction.
Assume that the parameter d is large enough. Let us prove that

if the pointer of the yth scale is tied

to the point number x; then (x; y; d) ∈ M:
(�)

Indeed, given y and d, we start the construction with the parameter d and wait until
the pointer of the yth scale is tied, x is the number of the point under this pointer.
Then we have K(x | 〈y; d〉)¡c, where c is a constant. Therefore, K(x |y)¡c′ log d¡d
(where c′ is a constant and d is large enough).

7 There exist more than 3ve natural de3nitions of conditional entropy (either being or not being monotone
with respect to the condition). This theorem holds for all of them. For the proof to be correct in all cases
one should take x and y only of the form 0 : : : 01.

26 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

Now, let us 3x a suQciently large value for d. Let b be the maximal point number
which is reached by in3nitely many pointers in the process of the auxiliary construction.
The algorithm m-reducing U to M , works as follows.
Given an input z, let us 3nd the condition yz for which the bth point of the scale

assigned to yz is marked by (b; z). Such a condition exists due to our choice of b.
We claim that z ∈U if and only if (b; yz; d)∈M for all z except a 3nite set of the
elements z for which the pointer of the scale assigned to yz stops above b. The proof
immediately follows from the description of the auxiliary construction, from (�), and
the choice of b.

Note that the one-dimensional section {y | (b; y; d)∈M} of the three-dimensional set
M is already m-complete.
From now on, we will consider the unconditional entropy only.

Theorem 2.2 (S. Positselsky). The overgraph of any entropy function is a resilient
set.

Proof. Put M = {(x; n) |K(x)¡n} and let B be an enumerable set not intersecting M .
We claim that the second component of the pairs from B is bounded, and the bound
can be e.ectively found starting from a program enumerating B.
Given n, consider the 3rst pair of the form (x; n) caught in the enumeration of B.

If such a pair exists, then K(x)¡C log n, where the factor C e.ectively depends on a
program enumerating B. For large n we have C log n¡n and therefore K(x)¡n. The
latter means that (x; n) belongs to M , which contradicts our assumption that M and B
do not intersect.
Let d be the bound found in the previous paragraph. Then it is easy to write

a program enumerating the set D=M ∪{(x; n) | n¿d}. We know that M is con-
tained in D and B∩D is empty. It remains to prove that D is decidable. Indeed,
D=(M ∩{(x; n) | n6d}) ∪ {(x; n) | n¿d}: The second term of this union is obviously
decidable. The 3rst term is 3nite for the simple and the pre3x entropy. For the cases of
the decision entropy, the a priori entropy, and the monotone entropy it suQces to show
that for any n the set E= {x |K(x)¡n} is decidable. The three mentioned entropies
are de3ned on binary words. It follows easily from their de3nitions that the set E
contains all initial subwords of any of its words. Besides, any subset of the set E such
that none of its elements are initial subwords of one another contains no more than 2n

elements. Hence, there are not more than 2n in3nite strings having the property that
all of their initial subwords belong to E. Let us denote those strings by y1; : : : ; yi : : : ;
and the set of all their initial subwords by F . For any word z ∈E\F , let us de3ne
an initial subword called the trunk of z. It is the shortest initial subword of z which
does not belong to F . It is clear that all the trunks belong to E and they are not one
another’s initial subwords. Thus, there are not more than 2n trunks. All the words with
the same trunk form a tree without in3nite branches, which is therefore 3nite. Hence,
the set E\F is 3nite. Each yi is computable, since E is enumerable and for any long

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 27

enough w which is an initial subword of yi, exactly one of the two words w0 and w1
belongs to E.

Theorem 2.3 (An. Muchnik). The overgraph of any entropy function is not
bT -complete.

Proof. This follows from Theorems 1.4 and 2.2.

An argument analogous to the proof of Theorem 1.4 shows that the universal enu-
merable set is not bT -reducible to the overgraphs of the entropy functions, even if
those functions were relativized by any oracle.
The idea of the next proof was invented nearly before the notion of the entropy itself.

Since similar arguments were suggested by many people independently, we do not
indicate who the author is.

Theorem 2.4. The overgraph of any entropy function is w-complete.

Proof. We would like to construct an algorithm w-reducing an enumerable set U to the
set M = {(x; n) |K(x)¡n}. Let us 3x some enumerations of U and M . The algorithm
has to 3nd out whether y∈U . Let d be the length of the binary representation of y.
Using the oracle, we 3nd the values of K on all the binary words of length d2.

Since these values are bounded by const d2, all the questions to the oracle can be
posed simultaneously. For each word z of length d2 such that K(z)¡d2, let us 3nd
the number of steps t(z) in which the pair (z; d2) will be caught in the enumeration of
M . Here we presume that the oracle gave the correct answers; otherwise, our algorithm
may never stop! Let us denote by s the maximal value of t(z) on the words z of length
d2 on which t is de3ned. We claim that if d is large enough, then y is caught in the
3rst s steps of the enumeration of U whenever y belongs to U . Indeed, assume the
contrary. We have y∈U . Let r denote the number of steps in which y gets caught
in U . Then we have s¡r. Consider the set V of all the words z of length d2 for
which the pair (z; d2) gets caught in the enumeration of M in the 3rst r steps. Since
|V |¡2d

2
, there is a word of length d2 which does not belong to V . If w is the

3rst such word, then it is suQcient to know y in order to 3nd w. Hence, we have
K(w)¡K(y)+const¡const d. The rightmost term of the inequality is smaller than d2

for large d. That is a contradiction.
It remains to “repair” the constructed algorithm on a 3nite number of inputs of small

lengths to make it correct.

Theorem 2.5 (M. Kummer). The overgraph of any simple entropy function is
tt-complete.

Proof. The argument is parallel to our proof of Theorem 2.1.
Let U be an enumerable set. We would like to construct an algorithm tt-reducing

U to the set M = {(x; n) |KS (x)¡n}, where KS is the simple entropy. Let us describe
an auxiliary construction with a parameter d.

28 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

This construction di.ers from the one introduced for the proof of Theorem 2.1 in the
following. In the previous construction, the scales were assigned to conditions; now
they are numbered by positive integers expressing the lengths of binary representa-
tions. 8 On the stage number t the pointer of the yth scale is moved to the point x,
which is de3ned below (if this pointer is not yet tied). We take the minimal x for
which there is p6x2y−d such that (p; y) =∈Mt . Such a value of x exists, because
|{p | (p; y)∈M}|¡2y =2d2y−d.
The claim (�) from the proof of Theorem 2.1 is modi3ed as follows:

if the pointer of the yth scale is tied to the point x; then

the entropy of any number from the semi-interval

((x − 1)2y−d; x2y−d] is smaller than y − d=2:

(�)

Let us prove that (�) is true for d large enough. We want to construct a number q
from the semi-interval ((x − 1)2y−d; x2y−d]. In order to do that, it suQces to know
the value of d and the binary representation of the number (x2y−d − q), completed
by zeroes to the left so that there are exactly (y − d) bits. Let us denote this binary
word by v. Further, let @(v) denote the length of v and v̂ be the number represented
by v. We can recover y as d + @(v). Let us start the auxiliary construction with
the parameter d and wait until the pointer of the yth scale is tied to some point. If
x is the number of this point, then q= x2y−d − v̂. Now let us estimate the entropy
of q:

KS(q) ¡ KS(〈d; v〉) + const ¡9 const log d+ @(v)

= const log d+ y − d ¡ y − d=2:

The reducing algorithm chooses b and given an input z 3nds yz exactly as in Theorem
2.1. We claim that for all z but a 3nite set of exceptions the following implications
hold (here we write y instead of yz):

z ∈ U ⇒∀p ∈ ((b− 1)2y−d; b2y−d] KS(p) ¡ y − d=2;

z =∈ U ⇒∃p ∈ ((b− 1)2y−d; b2y−d] KS(p)¿ y:

As in Theorem 2.1, these implications follow straightforwardly from the description
of the auxiliary construction, the statement (�), and the choice of b.
Note that these implications allow to answer the question “Does z belong to U?” even

when the oracle’s answers are incorrect. Of course, if the oracle answers incorrectly,
then the reducing algorithm can answer incorrectly, as well.

8 This distinction is, of course, informal.
9 It is for this inequality that we need the entropy to be simple.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 29

Unlike in the previous theorem, in the following theorem we deal with one speci3c
entropy function. On the other hand, our considerations do not depend on the entropy
type (it is correct for the simple entropy as well as for the pre3x, monotone, decision,
or a priori entropy).

Theorem 2.6 (An. Muchnik). There exists an entropy function with a tt-complete
overgraph.

Proof. Let U be an enumerable set and K be any entropy function. Let us modify
the function K to get another entropy function K ′. If z=0x1v and x =∈U , then K ′(z)
equals the number K(z) + 2 if the latter is even, and K(z) + 3 otherwise. If z=0y

or z=0x1v and x∈U , then K ′(z) is equal to the number K(z) + 1 if it is odd, and
K(z) + 2 otherwise.
If K is a monotone entropy function then it is determined by an encoding function 3.

Then de3ne the encoding function 3′ for the entropy function K ′ as follows.
For all z
• if a string w of an odd length is a 3-description of z then 001w is a 3′-description
of z,
• if a string w of an even length is a 3-description of z then 01w is a 3′-description
of z.
Additionally, for z=0y and for z=0x1v, where x∈U
• if a string w of an odd length is a 3-description of z then 01w is a 3′-description

of z,
• if a string w of an even length is a 3-description of z then 1w is a 3′-description
of z.
Finally, if a string w is a 3′-description of z then all strings ww′ are also

3′-descriptions of z.
It is easy to check that K ′ is an entropy function (of the same type as the

function K).
Let us construct an algorithm tt-reducing the set U to the overgraph of K ′. We 3x

large enough c and for each p¡cx ask the oracle whether the pair (0x1; p) belongs
to this overgraph. The output of our reducing algorithm on the input x is de3ned by
the condition that x∈U if and only if K ′(0x1) is odd.

Note that the algorithm terminates even for incorrect answers of the oracle.

Theorem 2.7 (An. Muchnik). There exists a pre7x entropy function with a non-tt-
complete overgraph.

Proof. We will use the following notion of a 7nite game. A 3nite game is determined
by
• a 3nite set of positions,
• two directed graphs on that set (�-graph and �-graph),

30 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

• two complementary subsets of the position set (�-set and �-set), and
• an initial position d0.

The union of �- and �-graph should be acyclic.
The game is played by two players (�- and �-player). The game starts in the position

d0 and consists of an in3nite sequence of moves taken by the players in turn (player
� has the 3rst move). When the game is in a position d, the �-player can either stay
in the same position or move to some position d′ such that the edge (d; d′) is present
in the �-graph. The move of the player � is de3ned symmetrically. Since the union of
�- and �-graph is acyclic, the game will stabilize at some position. If this position is
in �-set, then �-player wins. Otherwise, he loses.
By the induction on the number of game positions we prove that there exists a win-

ning strategy for one of the players. Let the set D� contain all positions d such that
the edge (d0; d) is in the �-graph. De3ne the set D� symmetrically. For every position
d∈D� de3ne a game Ed

� . The position set of this game is the position set of the initial
game without the position d0. The �- and �-graphs as well as the �- and �-sets are
the graphs and sets of the initial game restricted to the new position set. The initial
position is d. Player � is the 3rst to move. Symmetrically, for every position d∈D�

we de3ne a game Ed
� . If there exists a position d∈D� such that the player � has a

winning strategy in the game Ed
� then the winning strategy for � in the initial game

starts with the move d0→d and continues as in Ed
� . If for every position d∈D� player

� has a winning strategy in Ed
� and, besides, the player � has a winning strategy in

Ed
� for some d∈D�, then there exists (an obvious) winning strategy for � in the initial

game. Suppose that for every position d∈D� player � has a winning strategy in Ed
�

and for every position d∈D� player � has a winning strategy in Ed
� . Then � has a

winning strategy if the initial position d0 is in the �-set. If the initial position is in
the �-set then � has a winning strategy. By the induction hypothesis, in every game
Ed
� and every game Ed

� either � or � has a winning strategy. Consequently, one of the
shown cases takes place, and either � or � has a winning strategy in the initial game. In
fact, this proof leads to an e5ective construction of the winning strategy for one of the
players.
Now return to the proof itself. Let us call a function f above enumerable if it has an

enumerable overgraph. Denote by fs the upper bound for f which one can obtain from
the 3rst s steps of the above enumeration of f. The di.erence (fs+1−fs) can be any
nonnegative function that is positive only in 3nite number of places. Let KP be any pre-
3x entropy function. We will construct an enumerable set U and an above-enumerable
function F for which the function H =min(KP+2; F) will be a pre3x entropy function.
In addition, the set U will not be tt-reducible to the overgraph of H . We assume that
KP0 and F0 have 3nite values and

∑
x 2

−F0(x) 6 1
4 . The set U will be constructed as

a subset of the universe of all triples of natural numbers. Let {�n} be an enumeration
of all tt-reducing partially de3ned algorithms. Using inputs of the form (n; i; j), we will
make sure that the algorithm �n does not reduce U to the overgraph of H . The numbers
n will be processed in the following order 1; 1; 2; 1; 2; 3; 1; 2; 3; 4; 1; 2; 3; 4; 5; : : : :

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 31

To each number n whose processing has already started we assign two natural num-
bers in, jn. Also, for some n’s we assign a 3nite game Gn and a position of that game.
When we return to the number n the next time, we can either let one of the partners
make his next move in the game Gn, or change the numbers in, jn and the game Gn.
A position in the game Gn is a 3nite set An (which is 3xed for the game), a function
hn :An→N, and two rational numbers qn and pn (hn, qn and pn may change with any
move). Moves of the 3rst player will determine the decrease of the estimate Fs. Moves
of the second player will be determined by the decrease of the estimate KPs. When
we are processing the number n for the 3rst time, we set in =1 and jn =1. When we
return to the number n again, we increase the value of in by 1 if the following holds:
there exists a number m smaller than n such that the position in the game Gm or the
game Gm itself was changed when we were dealing with m for the last time. If a
change of the estimate KPs violates the rules of the game Gn, we increase the value
of jn by 1.
Assume that we are processing the number n at the lth step. De3ne the values of

in and jn. If the numbers in and jn remain the same, and the game Gn is de3ned,
make a move in that game. If either in or jn changed or Gn is unde3ned, run l steps
of the algorithm �n on the input (n; in; jn). If the algorithm did not produce a table 10

in the output, then Gn is unde3ned. If the algorithm produced a table, then the game
Gn is de3ned as follows. The questions to oracle are of the form “is H (x) smaller
than r?”, that is, a question is related to a pair (x; r). Let Bn be the set of all the 3rst
coordinates of the questions to the oracle from the table; then we put An =Bn\

⋃
m¡n Am.

The function hn on the set An should be bounded above by the function min(KPl +
2; Fl). The numbers qn and pn should be less than 2−n−in−2. In the initial position,
we de3ne hn =min(KPl + 2; Fl) and qn=0, pn =0. The 3rst player can move from a
position (hn; qn; pn) to a position (h′n; q

′
n; p

′
n) such that h′n6hn, q′n− qn =(

∑
x 2

−h′n(x))−
(
∑

x 2
−hn(x)), p′

n =pn. The second player can move from a position (hn; qn; pn) to a
position (h′n; q

′
n; p

′
n) such that h′n6hn, q′n = qn, p′

n − pn =(
∑

x 2
−h′n(x)) − (

∑
x 2

−hn(x)).
To each function from Bn to N the table assigns the answer of the algorithm �n to the
question whether the triple (n; in; jn) belongs to U . We know that either the 3rst player
has a winning strategy to make the game stabilize at the answer “yes” or the second
player has a winning strategy for stabilization at the answer “no”. In the latter case,
the 3rst player also has a winning strategy for stabilization at the answer “no”. Really,
the game considered is “symmetric” except for who takes the 3rst move. So, if the
3rst player stays in the initial position after the 3rst move, he further can follow the
second player’s winning strategy. In any case, there is one answer such that the 3rst
player has a winning strategy for stabilization at it. Let his winning set be the set of
positions corresponding to that answer (then, the 3rst player has a winning strategy).
In addition, if this answer is “no”, we put the element (n; in; jn) into the set U .

We can assume that for even s we have Hs =min(KPs=2 + 2; Fs=2) and for odd s
we have Hs =min(KP(s−1)=2 + 2; F (s+1)=2). Suppose the game Gn was de3ned at the

10 Which shows questions to the oracle and the outputs of the algorithm depending on the oracle’s answers.

32 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

lth step. Then the relation between the position in this game after the vth move and
the estimates for KP and F is determined by the equality hn = H 2l+v (for arguments
in An). If the games with numbers di.erent from n will not “interfere” and the sec-
ond player will not violate the prohibition to change the value of (

∑
x 2

−hn(x)) too
much, the algorithm �n will make an error on the input (n; in; jn) (if one considers this
algorithm as attempting to reduce U to the overgraph of H). The games with numbers
greater than n cannot interfere, since Am does not intersect Bn for m¿n. Let us prove
by induction on n (as usually in the priority method) that the values of in, jn, and
Gn change a 3nite number of times. By the induction hypothesis, starting from some
moment all the games with numbers smaller than n do not change. Since the games
are 3nite, after some moment their positions are not changed. Therefore, the value of
in stabilizes. After that, any change of jn is the consequence of an increase of the value
of (

∑
x 2

−KP s(x)−2) by at least 2−n−in−2 (which is now 3xed). Since (
∑

x 2
−KP s(x))61,

the value of jn stabilizes. When in and jn are 3xed, the table produced by the algorithm
�n on the input (n; in; jn) is uniquely determined if it exists. Therefore, Gn stabilizes
as well. It remains to prove that the function H =min(KP + 2; F) is a pre3x entropy.
For this, one has to prove that H6KP + const, function H is above enumerable,
and

∑
x 2

−H (x)61. The 3rst follows straightforwardly from the de3nition of H . The
function H is above enumerable because KP and F are. Finally, let us prove that
∑

x 2
−H (x)61. We will use the identity

∑
x 2

−H (x) =
∑

x 2
−H 0(x) +

∑
x

∑
s (2

−Hs+1(x)−
2−Hs(x)). Since

∑
x 2

−H 0(x)6
∑

x 2
−F0(x), we have

∑
x 2

−H 0(x)6 1
4 . Every nonzero dif-

ference (2−Hs+1(x) − 2−Hs(x)) occurs either due to the decrease of the estimate for
(KP(x)+2) or due to a move of the 3rst player in one of the games. For any n and i
there may be several games in which the second player violated the game prohibition,
and no more than one game where the prohibition was not broken. Let us partition
the set of pairs (x; s) into three parts. The 3rst part consists of pairs with an odd s.
The second part contains the pairs with an even s corresponding to the games with the
prohibition unbroken. The third part consists of pairs with an even s corresponding to
the games with the prohibition violated. The sum (2−Hs+1(x)− 2−Hs(x)) over pairs (x; s)
from the 3rst part is not greater than the sum (2−KP s+1(x)−2−2−KP s(x)−2) over all pairs
(x; s). The sum (2−Hs+1(x) − 2−Hs(x)) over pairs (x; s) from the second part does not
exceed

∑
n; i 2

−n−i−2 = 1
4 . The sum (2−Hs+1(x)−2−Hs(x)) over pairs (x; s) from the third

part is not greater than the sum (2−KP s+1(x)−2 − 2−KP s(x)−2) over all pairs (x; s). Since
∑

x

∑
s (2

−KP s+1(x)−2 − 2−KP s(x)−2)¡
∑

x 2
−KP(x)−26 1

4 , we obtain
∑

x 2
−H (x)61.

In conclusion let us prove a “quantitative” theorem.

Theorem 2.8 (An. Muchnik). For any % there exist x and v such that

KS(x) + % ¡ KS(v)

and

KP(v) + % ¡ KP(x):

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 33

Proof. 11 Suppose that there is a % such that for all x and v KS(x)+%¡KS(v)⇒KP(x)
¡KP(v) + %. Then the algorithm from Theorem 2.5, which tt-reduces the enumerable
set U to the overgraph of KS, can be modi3ed to obtain an algorithm � which tt-
reduces the set U to the overgraph of KP. This contradicts Theorem 2.7 when U is
tt-complete.
Recall that the proof of Theorem 2.5 implies the existence of an algorithm that takes

an input z and constructs a natural number y and a set A of binary words of length y
such that

z ∈ U ⇒ ∀p ∈ A KS(p)¡y − 4d;

z �∈ U ⇒ ∃p ∈ A KS(p)¿ y:

The number d here is 3xed in advance and may be as large as one wishes.
The new algorithm � works as follows. If for all p∈A there exists a binary word

q of length y − 2d such that KP(p)¡KP(q), then � decides that z ∈U . Otherwise, �
decides that z =∈U .
To prove that the algorithm � is well de3ned, we need two well-known facts.
Fact 1: ∃c ∀n for any word w of length n it is true that

KP(w) ¡ n+ KP(n) + c:

Fact 2: ∃c ∀n there exists a word w of length n such that

KP(w) ¿ n+ KP(n)− c:

To prove Fact 1 note that the function f= w(@(w)+KP(@(w))) is above enumer-
able and

∑
w 2

−f(w)61 (where @(w) denotes the length of w).
To prove Fact 2 we use the well-known relation between the pre3x entropy and

semimeasures enumerable from below. Consider the function g= n
∑

@(w)=n 2
−KP(w).

Since g is enumerable from below and
∑

n g(n)61 we have ∀n g(n) ¡ const 2−KP(n).
In the sum

∑
@(w)=n 2

−KP(w) at least one of the summands must be less than 2−n const
2−KP(n), since there are 2n summands. Passing to the logarithms, we obtain Fact 2.
Let us return to our algorithm �.
If ∀p∈A KS(p)¡y − 4d then for any random word r of length y − 3d we have

∀p∈A KS(p) + %¡KS(r). Indeed, KS(r) ¿ @(r), and one may assume that d¿%.
From the initial hypothesis we obtain ∀p∈A KP(p)¡KP(r)+%. Using Fact 2 we 3nd
a word q of length y−2d such that KP(q)¿y−2d+KP(y−2d)−c. From Fact 1 we
get KP(r)¡y−3d+KP(y−3d)+c. Finally, we obtain ∀p∈A KP(p)¡KP(q)−d+
KP(y−3d)−KP(y−2d)+%+2c. As we know, ∃c′ ∀i; j KP(i)¡KP(j)+KP(i|j)+c′.
Therefore, KP(y−3d)−KP(y−2d)¡KP(y−3d|y−2d)+c′. To 3nd y−3d knowing

11 If this theorem holds for one pair of functions KS and KP then it also holds for all such pairs. This
follows from the fact that the di.erence between two entropy functions of the same type is bounded by a
constant.

34 A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35

y−2d, it suQces to have d. Thus, ∀p∈A KP(p)¡KP(q)−d+const log d. For large
d we get ∀p∈A KP(p)¡KP(q).
If for some p∈A we have KS(p)¿ y, then consider a word s of length y−d such

that KP(s)¿y− d+KP(y− d)− c (here we use Fact 2). Since KS(s)¡@(s) + const,
for large d we have KS(s)+ %¡KS(p). By the initial hypothesis, KP(p)¿KP(s)− %.
According to Fact 1, for any word q of length y − 2d we have KP(q)¡y − 2d +
KP(y− 2d)+ c. Combining all these inequalities, for any word q of length y− 2d we
get KP(p)¿KP(q)+d−KP(y− 2d)+KP(y−d)− %− 2c. Applying the conditional
entropy KP(y− 2d|y−d), we obtain ∃p∈A ∀q (@(q)=y− 2d⇒KP(p)¿KP(q)) if
d is large enough.
This proves that the algorithm � is well de3ned.

The question of tt-completeness was studied for the simple and the pre3x entropies.
One can prove an analogue of Theorem 2.5 for the decision entropy. An analogue of
Theorem 2.7 can be veri3ed for the a priori entropy.

Problem. Is there a monotone entropy function whose overgraph is not tt-complete?

Acknowledgements

The authors express gratitude to the Institute of New Technologies of Education,
Moscow, for supporting their research in these unfortunate days for all Russian science.
They thank the leaders of Kolmogorov Seminar – A. Semenov, A. Shen,
N. Vereshchagin – and its participants for fruitful discussions. Part of this work was
supported through the CNRS exchange program during the visit of one of the au-
thors (AM) to the Laboratoire d’Informatique du Parallelisme (Lyon, France) kindly
arranged by B. Durand. L. Positselsky and M. Semenova helped very much with En-
glish translation of this article. The author thank F. Stephan for reading carefully the
preliminary version of this paper and making extremely useful suggestions. They also
thank all those who contributed to the present work. The authors were partly supported
by Russian Foundation Basic Research Grant 01-01-00505.

References

[1] M. Blum, I. Marques, On complexity properties of recursively enumerable sets, J. Symbolic Logic 38
(1973) 579–593.

[2] R.M. Friedberg, Three theorems on recursive enumeration, J. Symbolic Logic 23 (3) (1958) 309–316.
[3] G.N. Kobzev, On r-separable sets, Issledovanija po matematicheskoj logike i teorii algoritmov,

University of Tbilisi, 1975, pp. 19–30 (in Russian).
[4] M. Kummer, On the complexity of random strings, Proc. 13th Symp. on Theoretical Aspects of

Computer Science, Lecture Notes in Computer Science, vol. 1046, Springer, Berlin, 1996, pp. 25–36.
[5] M. Kummer, F. Stephan, Recursion theoretic properties of frequency computation and bounded queries,

Inform. and Comput. 120 (1) (1995) 59–77.
[6] A.H. Lachlan, A note on universal sets, J. Symbolic Logic 31 (4) (1966) 573–574.

A.A. Muchnik, S.Y. Positselsky / Theoretical Computer Science 271 (2002) 15–35 35

[7] A.H. Lachlan, wtt-Complete sets are not necessarily tt-complete, Proc. Amer. Math. Soc. 48 (2) (1975)
429–434.

[8] Al.A. Muchnik, On separability of recursively enumerable sets, Dok. Akad. Nauk SSSR 109(1) (1956)
29–32 (in Russian) (Translation available in Soviet Math. Dok.).

[9] Al.A. Muchnik, On reduction of the problems of decidability of enumerable sets to separability problems,
Izv. Akad. Nauk SSSR Serija Mat. 29(3) (1965) 717–724. (Translation available in Soviet Math. Izv.)

[10] An.A. Muchnik, S.E. Positselsky, On one class of enumerable sets, Uspehi Mat. Nauk 54(3) (1999)
171–172 (in Russian) (Translation available in Russian Math. Surveys).

[11] E.L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer.
Math. Soc. 50 (5) (1944) 284–316.

[12] V. Uspensky, A. Semenov, Algorithms: Main Ideas and Applications, Kluwer Academic Publishers,
Dordrecht, 1993.

[13] V. Uspensky, A. Shen, Relations between varieties of Kolmogorov complexities, Math. Systems Theory
29 (3) (1996) 271–292.

