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In the 1930s, A.N. Kolmogorov constructed a sub-
stantiation of probability theory by means of measure
theory. However, not all problems related to the sub-
stantiation were solved. In 1963 [1], Kolmogorov
started to develop a new approach to the problem, the
theory of descriptive complexity. In [1], he obtained
upper and lower bounds for the maximal number of
admissible place-selection rules for which a random
number generator surely exists and stated the problem
of obtaining an estimate of exact order. In this paper, we
solve this problem of Kolmogorov; namely, we show
that his lower bound is of exact order.

In [1], Kolmogorov defined the notion of a place-
selection rule for a finite binary sequence 

 

t

 

. Its informal
description is as follows (see [1] for the precise defini-
tion). Let us imagine that we have a set of cards; the
number of cards equals the length of 

 

t

 

. The figures from
the sequence 

 

t

 

 are written on the card’s faces; the backs
of all cards are identical. First, the cards lie on their
faces in the same order in which the figures are
arranged in 

 

t

 

. The rule decides which card is to be over-
turned and (before the card is overturned) whether the
figure written on the card should be included in the sub-
sequence. In making the current decision, the rule can
take into account the figures written on the cards
already overturned. The subsequence selected by a rule

 

r

 

 from a sequence 

 

t

 

 is denoted by 

 

r

 

[

 

t

 

]

 

.
Sometimes, it is useful to consider narrower classes

of rules. The monotonic rules (considered for the first
time by Church in 1940) always overturn cards in their
initial order. The nonadaptive rules specify at once a set
of cards, and the subsequence is formed by the figures
written on these cards and arranged in the initial order.

 

Definition 1. 

 

Let 

 

�

 

L

 

 be a set of rules on sequences
of length 

 

L

 

. A sequences 

 

t

 

 of length 

 

L

 

 is called an

(

 

n

 

, 

 

ε

 

)-random number generator for 

 

�

 

L

 

 if each rule
from 

 

�

 

L

 

 selects a subsequence 

 

r

 

[

 

t

 

]

 

 in 

 

t

 

 with the follow-
ing property:

If the length of the subsequence is not less than 

 

n

 

,
then the fraction of zeros in this subsequences differs

from  by a value smaller than 

 

ε

 

.

The absolute value of the difference between  and

the fraction of zeros in the sequence is called the devi-
ation (of the fraction of zeros).

 

Remark.

 

 The results given below can be general-
ized to the case where 0 and 1 are encountered at fre-
quencies close to 

 

p

 

 and 1 – 

 

p

 

, respectively, in all long
subsequences selected by simple rules.

To give a precise meaning to the notion of not too
complex rules, we define the complexity of a finite set
to be the binary logarithm of its cardinality. Let us
introduce the notation 

 

d

 

(

 

n

 

, 

 

ε

 

)  2

 

n

 

ε

 

2

 

log

 

2

 

e

 

.

 

Theorem 1

 

 (Kolmogorov, 1963). 

 

Consider arbi-
trary numbers

 

 

 

L

 

 (

 

sequence length

 

), 

 

ε

 

 > 0 (

 

the deviation
of frequency from probability

 

), 

 

and

 

 

 

n

 

 

 

≥

 

 

 

ε

 

–4

 

 (

 

length of a
selected subsequence

 

).

 

 For any set of rules 

 

�

 

L

 

 

 

of
complexity less than d

 

(

 

n

 

, 

 

ε

 

)(1 –

 

 ε

 

)

 

,

 

 there exists an

 

(

 

n

 

, 

 

ε

 

)-

 

random number generator.

 

In [1], Kolmogorov only gave an outline of the proof
of this theorem. The complete proof (which involves
some delicacies) is contained in our paper which is
being prepared for publication in the journal “Problemy
Peredachi Informatsii.”

The following theorem is an algorithmic analog of
Theorem 1 (the notion of conditional entropy was intro-
duced by Kolmogorov in [2]).

 

Theorem 1'.

 

 

 

Consider arbitrary numbers

 

 

 

L

 

(

 

sequence length

 

), 

 

ε

 

 > 0 (

 

the deviation of frequency
from probability

 

), 

 

and

 

 

 

n

 

 

 

≥

 

 

 

ε

 

–4

 

 (

 

length of a selected sub-
sequence

 

). 

 

For the set 

 

�

 

L

 

 

 

consisting of all rules such
that their entropies conditional to a known

 

 

 

L are
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smaller than d

 

(

 

n

 

, 

 

ε

 

)(1 –

 

 ε

 

)

 

, 

 

there exists an

 

 (

 

n

 

, 

 

ε

 

)-

 

ran-
dom number generator.

 

Theorem 2

 

 (Kolmogorov, 1963). 

 

Consider arbi-

trary numbers L

 

 (

 

sequence length

 

), 

 

ε ∈

 

 

 

 (

 

the

deviation of frequency from probability

 

), 

 

and

 

 

 

n 

 

∈

ε

 

−

 

3

 

, 

 

 (

 

length of a selected subsequence

 

). 

 

There

exists a set

 

 

 

�

 

L

 

 

 

of nonadaptive rules of complexity less
than 

 

4

 

n

 

ε

 

(1

 

 + 

 

5

 

ε

 

)

 

 

 

for which there exists no

 

 (

 

n

 

, 

 

ε

 

)-ran-
dom number generator.

Theorems 1 and 2 give lower and upper bounds,
respectively, for the maximal number τ such that, for
any L and any set of rules of complexity less than τ,
there exists at least one (n, ε)-random number generator
of length L. Since d(n, ε) = 2nε2log2e is much smaller
than 4nε(1 + 5ε) at small ε, Kolmogorov wanted to
remove the discrepancy between the exponents of ε in
the lower and upper estimates. It turned out that the
lower estimate obtained by Kolmogorov is of exact
order (even for nonadaptive rules).

Theorem 3. Consider arbitrary numbers L

(sequence length), ε ∈  (the deviation of fre-

quency from probability), and n ∈  2ε–3log2L, 

(length of a selected subsequence). There exists a set
�L of nonadaptive rules of complexity less than

 for which there exists no (n, ε)-

random number generator.

The existence of such a set of rules is proved proba-
bilistically, as in Theorem 1. However, this time, we
consider probability distribution over the rules and
show that the event “for a set �L of rules, there exists
an (n, ε)-generator” has a probability of less than 1.

We seek the required set of rules among the non-
adaptive rules that select subsequences of length pre-
cisely n; i.e., a rule is specified by an n-element subset

of the set 1, 2, …, L. The number of such rules is ;

we introduce the uniform probability distribution on the
set of these rules.

Take a sequence t of length L. Let us estimate from
below the probability that it is not an (n, ε)-generator
for a randomly selected rule r, i.e., that the deviation
in r[t] is not less than ε. Suppose that the number of
zeros in t is not smaller that the number of ones (the
opposite case is handled symmetrically).

0
1
20
------, 

 

L
2
---

0
1
3
---, 

 

L
2
---

d n ε,( ) 1 ε+
1 n/ L 1–( )–
-------------------------------

L

n 
 

Consider the situation where the numbers  and

n  are integer; the general case is easily reduced

to this situation. We want to estimate from below the
probability of such a deviation for which the fraction of
zeros in a sample is larger than the number of ones by
at least ε; obviously, this probability is minimal when t
contains equally many zeros and ones. It is sufficient to
estimate the probability of the deviation equal to pre-
cisely ε. Obviously, this probability is

Using the upper and lower bounds for the binomial
coefficients implied by the Stirling formula and an esti-
mate of the Shannon entropy, we conclude that the
sought probability is larger than e–K, where

The probability that, for a fixed sequence, one rule does
not select a subsequence with deviation at least ε, turns
out to be smaller than 1 – e–K. Now, let us take indepen-
dently N random rules (some of these rules may coin-
cide). The probability that a fixed sequence t is an
(n, ε)-generator for the set of these rules is smaller than

(*)

(we have used the inequality  < e–1, which

holds for x > 1). Multiplying the value on the right-hand
side of inequality (*) by the number of sequences of
length L, we obtain a sharp upper bound for the proba-
bility of the existence of at least an (n, ε)-generator for
the given set of rules; namely,

which does not exceed 1 for N =  eKL ln2  < eKL. The
complexity of the set of rules under consideration is
less than

It remains to show that this value is less than

 for ε <  and n ≥ 2ε–3log2L.

L
2
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1
2
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 

L
2
---

1
2
--- ε– 
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L
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 
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The following theorem is an algorithmic analog of
Theorem 3.

Theorem 3'. Consider arbitrary integer L

(sequence length), rational ε ∈  (the deviation

of frequency from probability), and integer n ∈

2ε−3log2L,  (length of a selected subsequence).

For the set �L(n, ε) of all nonadaptive rules whose con-
ditional entropy at given L, n, and ε is smaller than

there exists no (n, ε)-random number generator. (Here,
C is a constant depending only on the choice of an opti-
mal programming language.)

By Theorem 3, for some set of nonadaptive rules of

complexity less than , there exists

no (n, ε)-generator of length L. Let us show that, for
given L, n, and ε, a set of rules with this property can be
constructed algorithmically.

Indeed, for any set �L of nonadaptive rules and any
sequence t of length L, we can determine effectively
whether t is an (n, ε)-generator for �L (for this purpose,
we must apply each rule from �L to t and calculate the
deviation). Searching through all sequences of length L,
we can determine whether there exist (n, ε)-generators
for �L. Searching through all sets of nonadaptive rules
of a given size, we can find the required set (if there are
several sets with the required property, we take the first
in the list).

The conditional (relative to L, n, and ε) entropy of
each rule from the found set does not exceed the com-
plexity of the set plus the length of the program imple-
menting the procedure described in the preceding para-
graph. The addition of the remaining rules with an

entropy smaller than  pre-

serves the absence of an (n, ε)-generator.
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POSTSCRIPT

In [1], Kolmogorov defined the notion of a table of
(n, ε, p)-random numbers for an �L , which differs from
an (n, ε)-random number generator mentioned in Defi-
nition 1 in that the fractions of ones in the long samples
obtained by rules from �L is close to p rather than to
1/2. By l(n, ε), Kolmogorov denoted the maximal num-
ber l such that, for any p, any L, and any set of rules hav-
ing a complexity less than l, there exists at least one
table of (n, ε, p)-random numbers of length L. The
results obtained in [1] imply that, at sufficiently small ε

say at ε <  and n ≥ ε–4,

Kolmogorov stated the problem of removing the dis-
crepancy between the power of ε in the lower and upper
bounds for l(n, ε). Our Theorem 3 implies the inequ-
ality

which holds at sufficiently small ε and n ≥ ε–4. (To

prove this, it suffices to set L =  in Theorem 3.)
Thus, both the upper and lower bounds for l(n, ε) have
the form (2log2e)n(ε2 + o(ε2)).
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